

June 4, 2020

Mr. Leo Hellested, P.E.
Office of Waste Management
Solid Waste Section
Rhode Island Department of Environmental Management
235 Promenade Street
Providence, Rhode Island 02908-5767

Attn: Mr. Robert Schmidt

Re: Quarterly Monitoring Report

1st Quarter (March) 2020, Surface Water and Groundwater Monitoring, Sampling, and Analysis

Tiverton Municipal Sanitary Landfill

Pare Project No.: 94139.24

Dear Mr. Hellested:

Enclosed herewith are results of the statistical analysis of groundwater monitoring data for the first quarterly monitoring round of Year 2020 from the Tiverton Landfill (Landfill). Pare Corporation (Pare) has prepared this report on behalf of the Town of Tiverton (Town). Pare conducted the groundwater sampling on March 26, 2020 at the background wells OW-9, OW-12 and OW-17, and compliance wells OW-7, OW-13, OW-14, OW-15, and OW-16. June 2019 is the first quarterly monitoring period where OW-12 has been designated as a background well. OW-17 was installed as an additional background well in April 2019.

Groundwater samples were analyzed by New England Testing Laboratory (NETLAB) of West Warwick, Rhode Island for the constituents listed in the Rhode Island Department of Environmental Management's (RIDEM's) *Solid Waste Regulations No.2, Solid Waste Landfills* (250-RICR-140-05-2), Section 2.3.26, *Constituents for Detection Monitoring*. Certified laboratory results data are enclosed as **Attachment 1** and are summarized on attached Table 1.

Groundwater field parameters consisting of temperature, pH, and specific conductivity were measured at each monitoring well, in accordance with the RIDEM-approved Groundwater Monitoring Plan for the Landfill. Field parameters were collected until three successive measurements stabilized within \pm 3% for temperature, \pm 0.1 standard unit for pH, and \pm 3% for specific conductivity, in accordance with US EPA's Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures. Field parameters are documented on Field Sampling Data Sheets, which are provided as **Attachment 2**.

Combustible gases are monitored at each well and at the top of the Landfill. Each of the well locations, with the exception of OW-15, had no detections of combustible gas observed during this monitoring round. OW-15 had a methane reading of >99% the Lower Explosive Limit (LEL). Historically, combustible gas monitoring during quarterly groundwater monitoring events had not resulted in detections of LEL exceedances until March 2019, when OW-15 produced a concentration of combustible gases at 44% of the LEL. Subsequent monitoring has resulted in continually increasing LEL fractions being detected, indicating that further assessment is warranted in this area. During the next monitoring round (June 2020), Pare will install a vented standpipe cap to mitigate interstitial vapor buildup at OW-15. LEL monitoring will continue with additional actions recommended if necessary.

8 BLACKSTONE VALLEY PLACE LINCOLN, RI 02865

Mr. Leo Hellested, P.E. (2) June 4, 2020

HUMAN HEALTH THRESHOLD EVALUATION

<u>Background Well OW-9</u> – Eleven (11) target metals were reported in the groundwater sample collected from OW-9 above the laboratory detection limits. None (0) of the detected target metals were reported above their corresponding Safe Drinking Water Act Maximum Contaminant Levels (MCLs) or human health thresholds at OW-9. No (0) target volatile organic compounds (VOCs) were reported above laboratory detection limits at OW-9.

<u>Background Well OW-12</u> – Six (6) target metals were reported in the groundwater sample collected from OW-12 above the laboratory detection limits. None (0) of the detected target metals were reported above their corresponding MCLs or human health thresholds at OW-12. No (0) target VOCs were reported above laboratory detection limits at OW-12.

<u>Background Well OW-17</u> – Ten (10) target metals were reported in the groundwater sample collected from OW-17 above the laboratory detection limits. None (0) of the detected target metals were reported above their corresponding MCLs or human health thresholds at OW-17. No (0) target VOCs were reported above laboratory detection limits at OW-17.

Compliance Well OW-7 – Seven (7) target metals were reported in the groundwater sample collected from OW-7 above the laboratory detection limits. None (0) of the detected target metals were reported above their corresponding MCLs or human health thresholds at OW-7. One (1) target VOC, methyl tert-butyl ether (MTBE), was detected in excess of the laboratory detection limits but below the applicable MCL and human health threshold. No (0) other target VOCs were reported above laboratory detection limits at OW-7.

Compliance Well OW-13 – Eleven (11) target metals were reported in the groundwater sample collected from OW-13 above laboratory detection limits. None (0) of the detected target metals were reported above their corresponding MCLs or human health thresholds at OW-13. Three (3) target VOCs; 1,4-dichlorobenzene, chlorobenzene, and MTBE; were detected in excess of the laboratory detection limits but below the applicable MCLs and human health threshold values. No (0) other target VOCs were reported above laboratory detection limits at OW-13.

Compliance Well OW-14 – Ten (10) target metals were reported in the groundwater sample collected from OW-14 above laboratory detection limits. None (0) of the detected target metals were reported above their corresponding MCLs or human health thresholds at OW-14. Six (6) target VOCs; 1,4-dichlorobenzene, acetone, benzene, chlorobenzene, chlorobenzene, and MTBE; were reported above laboratory detection limits but below their respective MCLs and human health thresholds. No (0) other target VOCs were reported above their laboratory detection limits at OW-14.

Compliance Well OW-15 – Ten (10) target metals were reported in the groundwater sample collected from OW-15 above laboratory detection limits. None (0) of the detected target metals were reported above their corresponding MCLs or human health thresholds at OW-15. Four (4) target VOCs; benzene, chlorobenzene, 1,4-dichlorobenzene, and MTBE were reported above their laboratory detection limits but below their applicable MCLs and human health thresholds. No (0) other target VOCs were reported above their laboratory detection limits at OW-15.

Compliance Well OW-16 – Five (5) target metals were reported in the groundwater sample collected from OW-16 above laboratory detection limits. None (0) of the detected target metals were reported above their corresponding MCLs or human health thresholds at OW-16. No (0) target VOCs were reported above laboratory detection limits at OW-16.

Mr. Leo Hellested, P.E. (3) June 4, 2020

TOLERANCE INTERVAL STATISTICAL EVALUATION

The Tolerance Interval (TI) approach was used to develop Tolerance Limits (TLs) for each target inorganic constituent (i.e., metals) using the background well analytical results from the eight preceding rounds for which analytical results are available. Historical metals data for each observation well is shown on **Attachment 3.** The data from OW-12, recently designated as a background well, was included in a re-evaluation of background TLs during this monitoring period. Due to occasional inability to sample one or more background wells, data from the present monitoring period through December 2016 were utilized to calculate applicable background TLs. The TI approach is considered inappropriate for analysis of organic constituents due to their presence being the result of anthropogenic activities. The TL for organic constituents is therefore presumed to be zero (i.e., not present); however, laboratory detection limits are unable to reach this level of certainty and as such, this method is not applicable to organic constituents and was therefore not performed to evaluate the results of reported VOCs.

Four (4) metals; arsenic, barium, cobalt and tin; had reported concentrations that exceeded their corresponding TLs calculated during the March 2020 monitoring round in at least one compliance well. In total, there were five (5) TL exceedances of these metals in this monitoring round. The TLs and the corresponding compliance well data from this monitoring round are presented in Table 1. Cobalt is routinely detected in groundwater beneath the landfill. Tin has periodically been detected in both background and compliance groundwater monitoring wells in excess of laboratory detection limits; however, the TL has been significantly lowered with the addition of OW-12 as a background monitoring well and is likely the result of these identified exceedances. None of the identified TL exceedances were present in excess of the applicable regulatory threshold values.

CUSUM METHOD STATISTICAL EVALUATION

The Shewhart-CUSUM Method, a supplemental statistical analysis method used in addition to the TI Method, was performed in accordance with the US EPA documents titled "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Interim Final Guidance, April 1989" and "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Addendum to Interim Final Guidance, July, 1992". Graphs of CUSUM values for inorganic metals for each observation well is shown on **Attachment 4**.

Barium at OW-12 and OW-13, and copper and zinc at OW-13 exceeded both of their respective Shewhart-CUSUM thresholds during the March 2020 monitoring round; however, concentrations appear to be consistent with those concentration detects during the past eight (8) rounds of sampling at these locations. The calculations utilized for determining the Shewhart-CUSUM thresholds for these compounds will be re-evaluated prior to submission of the next monitoring report, with adjustments if necessary.

ASSESSMENT MONITORING

The Shewhart-CUSUM analysis is utilized, along with the Tolerance Limits, to identify when Assessment Monitoring should be performed. In accordance with the May 2006 Groundwater Monitoring Plan, Assessment Monitoring is triggered if:

- 1. An inorganic parameter exceeds the upper Tolerance Limit in two (2) consecutive rounds <u>and</u> that parameter exceeds one of the two (2) Shewhart-CUSUM control limits in the latter monitoring round; or
- 2. An organic parameter exceeds one of the two Shewhart-CUSUM control limits.

Barium, copper, and zinc concentrations were detected at OW-13 in concentrations calculated to exceed the Shewhart-CUSUM thresholds for the current monitoring period. The concentrations of copper and zinc detected in OW-13 are compliant with the tolerance limits, and as such do not trigger Assessment Monitoring. Barium was detected in excess of both the tolerance limit and the calculated Shewhart-CUSUM threshold; however, barium is

Mr. Leo Hellested, P.E. (4) June 4, 2020

frequently detected in groundwater at the property and was not observed in significantly different concentrations at OW-13 compared to other compliance wells. Additionally, the presence of barium in OW-12, now designated as a background well, in excess of the Shewhart-CUSUM threshold calculated, indicates that the statistical method may need to be re-evaluated to confirm that the statistics are representative of groundwater conditions at the property.

Barium has exceeded the Shewhart-CUSUM thresholds in OW-12 each monitoring round since 2014, however the concentration detected in OW-12 during this monitoring period is similar to other background wells (0.024 mg/kg at OW-12 vs. 0.023 mg/kg at OW-9) and is compliant with the current Tolerance Limit. As such, Pare is of the opinion that Assessment Monitoring is not warranted for OW-12 for the next quarterly monitoring event in June 2020.

SURFACE WATER MONITORING

Per the request of the RIDEM in a letter dated January 31, 2019, the Town began incorporating surface water monitoring at surface water locations SW-1, SW-2, and SW-3 into the existing regular quarterly monitoring program. The parameters for surface water monitoring include: Solid Waste Regulations No. 2, Section 2.3.26: *Detection Monitoring* metals, mercury, tin, iron, calcium, magnesium, ammonia, total Kjeldahl nitrogen (TKN), total nitrogen, total phosphorus, and hardness. Data are summarized in attached Table 3, and the laboratory analytical report is provided as **Attachment 5**. Additionally, field screening was performed at each surface water location to determine temperature, pH, and specific conductivity.

Monitoring Location SW-1 – Nine (9) targeted Detection Monitoring metals were identified in the surface water sample collected at SW-1 in excess of laboratory detection limits. Additional detected targeted metals included calcium, magnesium, and iron. One (1) metal, iron (0.304 mg/L), exceeded the human health threshold (0.3 mg/L). Additionally, ammonia, total nitrogen as nitrates and nitrites, and TKN were detected in the samples collected at SW-1; however, they did not exceed their given threshold values, or no threshold values have been established for these parameters.

Monitoring Location SW-2 – Nine (9) targeted Detection Monitoring metals were identified in the surface water sample collected at SW-2 in excess of laboratory detection limits. Additional detected targeted metals included calcium, magnesium, and iron. One metal; iron (0.911 mg/L); was detected above the human health threshold. Additionally, ammonia, total nitrogen, and TKN were detected in the samples collected at SW-2; they did not exceed their given threshold values, or no threshold values have been established for these parameters.

Monitoring Location SW-3 – Twelve (12) targeted Detection Monitoring metals were identified in the surface water sample collected at SW-3 in excess of laboratory detection limits. One (1) metal, iron (1.18 mg/L), was detected above its human health threshold (0.3 mg/L) and its chronic aquatic life threshold (1 mg/L). Additionally, ammonia, total nitrogen, and TKN were detected in the samples collected at SW-3; however, they did not exceed their given threshold values, or no threshold values have been established for these parameters.

Targeted analytes detected above the laboratory detection limit in the three (3) surface water samples appear to be consistent with historical detections of these parameters. Graphs depicting historical concentrations of inorganic metals identified in surface water are provided as **Attachment 6**. A seasonal variation in iron concentrations may be present based on higher concentrations detected during the June 2019 sampling event relative to other quarterly monitoring events; however, further data collection is warranted to verify this observation.

MTBE ANALYSIS

Many of the most recent Assessment Monitoring rounds have been conducted due to MTBE concentrations in groundwater. Reported MTBE concentrations have generally risen since September 2006, as depicted in **Attachment 7**. The figure compares the recent increases in reported MTBE data from September 2006 to March

Mr. Leo Hellested, P.E. (5) June 4, 2020

2020. MTBE concentrations at OW-13, OW-14 and OW-15 are compared to historical concentrations and drinking water advisories defined in the US EPA document titled "2011 Edition of the Drinking Water Standards and Health Advisories".

Although reported MTBE concentrations appeared to be trending slowly upward, MTBE has never been reported above its odor threshold (0.020 mg/L) or its taste threshold (0.040 mg/L). The US EPA has not established a human health advisory concentration for MTBE.

Since the beginning of quarterly monitoring in 2018, concentrations of MTBE now appear to be stabilizing in OW-13, OW-14, and OW-15, with all detected concentrations during the March 2020 round being lower than the highest concentrations historically detected at each well and well below the odor and taste thresholds as well as being below the RIDEM GA Groundwater Objectives. Past Assessment Monitoring performed due to MTBE Shewhart-CUSUM threshold exceedances in these wells has not recently identified detectable concentrations of Section 2.3.27 parameters, and as such, it is Pare's opinion that the increasing trend in MTBE concentrations beneath the Landfill previously observed is an isolated phenomenon and not the result of a significant change in groundwater quality beneath the Landfill.

Despite CUSUM values of MTBE at OW-13, OW-14, and OW-15 remaining above their threshold during the March 20, 2020 monitoring round, Pare does not recommend Assessment Monitoring due to the aforementioned MTBE trend. The lack of Section 2.3.27 parameters in the past suggests that the presence of MTBE trend does not indicate an increased likelihood that Section 2.3.27 parameters would be present beneath the Landfill.

CONCLUSIONS AND RECOMMENDATIONS

Currently, the Town conducts Detection Monitoring at the Landfill for the parameters listed in Section 2.3.26 of the State Solid Waste Regulations, as well as mercury and tin. During this monitoring round, four (4) metals; arsenic, barium, cobalt and tin; exceeded their tolerance limits (TLs) in at least one well. Arsenic exceeded its TL during the previous monitoring round at OW-13 and OW-15. Barium exceeded its TL during the previous monitoring round at OW-13 and OW-15. No exceedances of the TL for tin were identified during the previous monitoring round. Exceedances in two consecutive monitoring rounds is one of the criteria used to consider performing Assessment Monitoring in subsequent monitoring rounds; however, the second requirement, an exceedance of the Shewhart-CUSUM threshold, was met only for barium at OW-13. Historically, barium is frequently detected in both background and compliance wells and Assessment Monitoring performed as a result of barium exceedances have not been indicative of Section 2.3.27 parameters. As such, Pare is of the opinion that the barium concentration does not warrant Assessment Monitoring and will evaluate the efficacy of the statistical method to ensure that the data accurately represents groundwater conditions. Based on this information, Pare does not recommend Assessment Monitoring be conducted at the Landfill during the upcoming June 2020 monitoring round.

Since the 2016 monitoring periods, a rising trend in detections of antimony at the compliance wells was observed; however, data from 2019 and the current monitoring period indicate that this parameter has since stabilized to concentrations below laboratory detection limits. As a result of the antimony detections, Assessment Monitoring was performed at OW-14 during 2017, which resulted in the detection of one Section 2.3.27 parameter, sulfides (0.04 mg/L) at this well. [MF1]OW-14 was sampled again in the December 2018 and March 2019 monitoring rounds, but sulfides were not detected in either round. Based on the absence of detectable concentrations of sulfides in the December 2018 and March 2019 sampling events, Pare requested and received approval from RIDEM to discontinue Assessment Monitoring.

Mr. Leo Hellested, P.E. (6) June 4, 2020

Pare recommended that wells OW-7 and OW-16 be incorporated into the compliance monitoring regimen in the 2017 Annual Groundwater Monitoring Report. Despite OW-7 having several years of sampling data, the sampling rounds were selected on a rotating basis with wells OW-6 and OW-8 for alternate monitoring. Pare recommended that wells OW-7 and OW-16 be sampled for two years, or eight consecutive monitoring rounds, prior to initiating statistical analysis. The March 2020 monitoring period marks the seventh monitoring round that these wells have been sampled. Samples were not collected from OW-7 and OW-16 in September 2019 due to concerns about Eastern Equine Encephalitis (EEE) and these wells were not sampled in December 2019 due to frozen well conditions. It is estimated that sufficient data to perform statistical analysis for the bedrock and overburden wells will be available upon completion of the June 2020 monitoring round.

Historically, methane has not been an issue at the Landfill; however, the last three (3) monitoring rounds have seen methane detections at monitoring well OW-15, including a >99% LEL reading in March 2020. Pare will install a vented standpipe cap at OW-15 during the June 2020 monitoring round and continue to monitor OW-15 for methane LEL exceedances. If LEL exceedances are still observed upon installation of the vented cap, additional measures will be evaluated to mitigate gas buildup.

Should the RIDEM have any questions regarding this letter or the attached data, please feel free to contact the undersigned at (401) 334-4100, thank you.

Very truly yours,

Timothy P. Thies, P.E. Senior Vice President

TPT/AWB/abv

Attachments

Figure 1 – Site Plan Depicting Notable Features and Sampling Locations

Table 1 – Historical Analytical Data, Observation Wells

Table 2 – Tolerance Intervals for March 2020 Monitoring Period

Table 3 – Historical Analytical Data, Surface Water Sampling

Attachment 1 – Laboratory Analytical Report, Observation Well Sampling

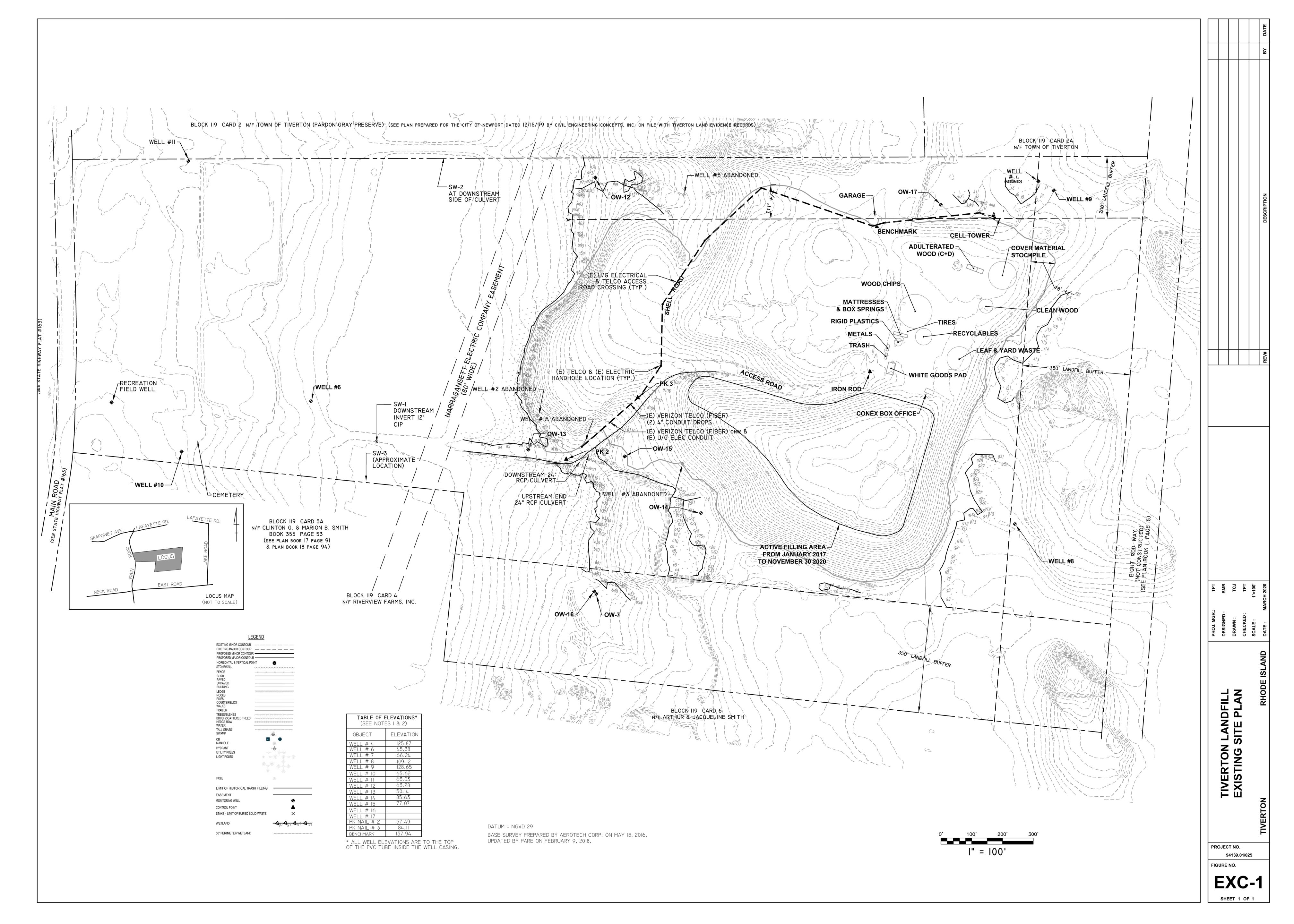
Attachment 2 – Field Sampling Data Sheets, Surface Water and Observation Water Logs

Attachment 3 – Charts of Historical Inorganic Compound Detections, Observation Wells

Attachment 4 – Shewhart/CUSUM Graphs for Inorganic Compounds, Observation Wells

Attachment 5 – Laboratory Analytical Report, Surface Water Sampling

Attachment 6 - Charts of Historical Inorganic Compound Detections, Surface Water Sampling


Attachment 7 – MTBE Historical Concentrations at OW-13, OW-14, and OW-15 and CUSUM charts

Cc: Richard Rogers, Tiverton Public Works Director (w/encl.)
Jay Lambert, Tiverton Landfill Subcommittee (w/encl.)
Christopher Cotta, Tiverton Town Administrator (w/encl.)
Arianne Barton, Pare Corporation (w/o encl.)

FIGURE 1

Site Plan Depicting Notable Features and Sampling Locations

TABLE 1 Historical Analytical Data, Observation Wells

TABLE 1 - OW-7 SUMMARY OF GROUNDWATER MONITORING RESULTS CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-7

Concentration (expressed in same units as Threshold Value)

	Thuseheld									Conce	entration	(express	ed in sam	ne units	as Thresh	old Val	ue)											
Parameter	<u>Threshold</u> <u>Value</u>	MAR '20	DEC '19	מרי ואדוד ב	MAR '19	DEC '18	SEP '18	3 JUN '18	MΔR '18	NOV '17	SEP '17	MAR '17	MAR '16	SEP '15	MAR '15	DEC '14	MAR '14	SEP '13	MAR '13	SEP '12	MAR '12	JUN '11	MAR '11	SEP '10	JUN '10	SEP '09	JUN '07	SEP '05
Antimony	0.006 mg/L ¹	ND	NT			0.001	ND	ND	ND	ND	ND	0.0070	ND	ND	ND	NT	ND	ND	ND	ND	ND	0.0250	ND	ND	ND	ND	ND	ND
Arsenic	0.010 mg/L ¹	ND	NT	0.0001	0.0002	ND	ND	0.0100	ND	ND	ND	ND	0.0070	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND ⁶	ND	ND	ND	ND	ND
Barium	2 mg/L ¹	0.033	NT		0.0340	0.0400	0.0540	0.0280	0.0380	0.0350	0.0330	0.0380	0.0390	0.0300	0.0330	NT	0.0310	0.0200	0.0310	0.0260	0.0280	0.0350	0.0398	0.0375	0.0370	0.0310	0.0340	0.0240
Beryllium	0.004 mg/L ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND^6	ND^6	ND	ND	ND	ND
Cadmium	0.005 mg/L1	0.0005	NT	0.0005	0.0007	ND	0.004	ND	ND	ND	ND	0.0010	ND	0.0010	ND	NT	0.0010	ND	ND	0.0050	ND	ND	0.0012	0.0419	0.0410	ND	ND	ND
Chromium	0.1 mg/L ¹	0.0001	NT	0.0008	0.0011	0.0040	0.0180	0.0040	0.0050	0.0050	0.0040	0.0060	ND	ND	ND	NT	ND	ND	ND	ND	0.0010	0.0080	ND	0.0054	0.0048	0.0530	ND	ND
Cobalt	0.73 mg/L ⁵	0.0072	NT	0.0078	0.0090	0.0200	0.0220	0.0150	0.0190	0.0180	0.0180	0.0250	0.0280	0.0200	0.0250	NT	0.0220	0.0130	0.0250	0.0160	0.0200	0.0200	0.0353	0.0229	0.0250	0.0250	0.0200	0.0190
Copper	1.3 mg/L ¹	ND	NT	0.002	0.002	ND	0.03	ND	ND	0.0050	ND	0.0060	0.0060	0.0080	0.0250	NT	0.0180	0.0040	ND	0.0080	0.0040	0.0390	0.0056	0.2180	0.5000	0.0058	0.0098	ND
Lead	0.015 mg/L ¹	0.0003	NT	0.0008	0.0013	ND	0.006	ND	ND	ND	ND	ND	ND	0.0010	0.0050	NT	0.0060	0.0040	0.0020	0.0020	0.0040	0.0460	0.0033	0.0074	0.0060	0.0043	0.0042	ND
Mercury	0.002 mg/L ¹	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	0.1 mg/L²	0.009	NT	0.0090	0.0110	0.0220	0.0320	0.0180	0.0210	0.0210	0.0190	0.0250	ND 0.4070	0.0200	0.0240	NT	0.0190	0.0120	0.0220	0.0150	0.0020	0.0220	0.0302	0.0270	0.0280	0.0390	0.0240	0.0220
Selenium	0.05 mg/L ¹	ND ND	NT	ND	ND	0.005 ND	ND ND	ND	0.0100	ND ND	0.0030	ND	0.1070	0.0070	0.1880	NT	0.1830	0.1410	0.1800	0.1920	0.2260	0.0340 ND	ND ND	ND ND	ND ND	0.0120 0.0054	0.0110	0.0140 ND
Silver Thallium	0.1 mg/L ^{2, 3} 0.002 mg/L ¹	ND	NT NT	ND ND	0.0002 ND	0.0003	ND	ND ND	ND 0.0003	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.0032	ND	ND	0.0054	ND 0.0440	ND
Tin	0.002 mg/L⁵ 22 mg/L⁵	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	0.0060	ND	ND	ND	ND	ND	ND	ND I	0.0420 ND	ND	ND
Vanadium	0.26 mg/L⁵	ND	NT	0.0009	0.0013	ND	0.016	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	0.0170	ND	0.0051	0.0072	0.0230	0.0240	ND
Zinc	2 mg/L ^{2, 3}	0.004	NT	0.0070	0.0060	0.0180	0.0850		0.0180	0.0200	0.0120	0.0210	0.0050	0.0120	0.0060	0.0060	190.00	ND	0.0150	0.0100	0.0130	ND	0.0250	0.0472	0.0380	0.0120	0.0110	0.0160
1,1,1,2-Tetrachloroethane	70 μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.2 µg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5 µg/L ^b	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.03 µg/L ⁷	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.2 µg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.05 µg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600 μg/L¹	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane 1,2-Dichloropropane	5 μg/L¹ 5 μg/L¹	ND	NT NT	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	NT	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	μg/L	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	610 µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	5.8	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrate	0.039 µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	5 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	90 μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	80 μg/L ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	80 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	1000 µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5 μg/L¹	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND	ND ND	ND 1.0	ND 2.0	ND ND	ND	ND	ND 2.7	ND 1.7
Chlorobenzene Chlorodibromomethane	100 μg/L¹	ND	NT	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	NT	ND	ND	ND	ND ND	ND	1.0 ND	ND	ND	1.4 ND	1.8 ND	ND	ND
Chloroethane	80 μg/L¹ 4.6 μg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	2.2	ND	1.3	1.6	1.5	3.8	ND
Chloroform	80 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	3 μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	70 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.27 µg/L ^{6- a}	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	61 µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl iodide	μg/L	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	4	NT	3.01	4.0	6.38	4.87	3.56	6.80	5.9	5.36	10.3	8.8	ND	ND	NT	9.7	5.6	11.9	8.0	11.2	10.7	15.7	7.2	8.2	9.0	12.0	7.4
Methylene chloride	5 μg/L¹	ND	NT	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	NT	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND
Styrene Tetrachloroethylene(PCE)	100 μg/L¹ 5 μg/L¹	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.9 ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	5 μg/L¹ 1000 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Trans-1,2-Dichloroethylene	1000 μg/L 100 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.27 μg/L ⁶⁻⁸	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichlo-2-butene	μg/L	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)	5 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	2000 μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	410 µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND
Vinyl chloride	2 μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 μg/L ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Concentration exceeds the specified Threshold Value

Note: Low flow purging and sampling used starting with the June 2005 monitoring round

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
 6. Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.
 7. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

 a. The Threshold value given for these compounds is the threshold value for a mixture of isomers. For example, cis- and trans-1,3-dichloropropylene were not identified as having individual threshold b. No threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes.

No threshold value has been provided for parameters not identified in the sources listed above "___" = One half of the laboratory detection limit "DL" NT = Not Tested due to dry conditions at well.

TABLE 1 - OW-9 BACKGROUND WELL HISTORICAL RESULTS CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-9

Concentration (Expressed in same units as Threshold Value)

<u>Parameter</u>	Threshold	MAR '20	DEC '19	JUN '19	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17 JU	JN '17 N	MAR '17 D	DEC '16 S	SEP '16 .	IUN '16 N	<u> 1AR '16</u> D	DEC '15 S	EP '15 J	<u>UN '15</u> <u>N</u>	MAR '15 D	EC '14 SEP	' '14 JUN '	14 MAR '14	DEC '13	SEP '13	JUN '13 <u>I</u>	MAR '13 D	DEC '12 S	SEP '12 J	IUN '12 MAF	<u>: '12</u> DEC	'11 SEP	<u>'11 JUN '1</u>	11 MAR '11	DEC '10	SEP '10	JUN '10
Antimony	Value 0.006 mg/L ¹	ND	ND	ND	0.0001	ND	NT	ND	ND	0.0290	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND N	T ND	ND	ND	NT	ND	ND	ND	NT	ND N	D NE	0.016	0.2000	0 ND	ND	NT	ND
Arsenic	0.010 mg/L ¹	0.0002	0.0001	ND	0.0001	ND	NT	ND	ND	ND			0.0030	ND	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N	D NE	D ND	ND		ND	NT	ND
Barium	2 mg/L ¹	0.023	0.0110	0.0060	0.0060	0.0320	NT	0.0090	0.0130	0.0410					NT				NT			0.0420 N				NT			0.0160			120 0.00	0.011			0.0230	NT	0.0460
Beryllium Cadmium	0.004 mg/L ¹	ND 0.0001	ND 0.0002	0.0001 0.0001	0.0003 0.0001	ND ND	NT NT	ND ND	ND 0.0020	ND 0.3650		NT NT	ND ND	ND ND	NT NT	NT NT	ND 0.0010	ND ND	NT NT	NT NT	ND (ND N' 0.0020 N'		ND ND	ND	NT NT	ND 0.0040	ND ND	ND 0.0010	NT NT	ND N				ND ND	ND ND	NT NT	0.0015 ND
Chromium	0.005 mg/L ¹ 0.1 mg/L ¹	0.0036	0.0002	0.0001	0.0001	0.013	NT NT	0.003	0.0020	0.0300			0.0040		NT				NT			0.0020 N 0.0270 N			0.0050 0.0150	NT NT			0.0010		א טא 0.0050 0.00						NT NT	0.0230
Cobalt	0.73 mg/L ^s	0.0008	0.0020	ND	0.0003	0.0030	NT	ND	0.0010	0.0020		NT	ND	ND	NT	NT	ND C		NT	NT		0.0100 N				NT	0.0020		0.0030	NT	ND 0.0						NT	0.0086
Copper	1.3 mg/L ¹	0.001	ND	ND	ND	0.0080	NT	ND	ND	0.0600	NT	NT	ND	ND	NT	NT	0.0020	ND	NT	NT	0.0020 0	0.0170 N	T ND	0.0060	0.0140	NT	0.0070	ND	0.0060	NT	ND 0.0	0.00	0.010	0.0400	0.0041	0.0043	NT	0.0200
Lead	0.015 mg/L ¹	0.003	0.0031	0.0004	0.0007	0.004	NT	0.001	0.0020	0.1820			0.0020		NT	NT			NT	NT		0.0160 N				NT			0.0060	NT	ND 0.0					ND	NT	0.0140
Mercury Nickel	0.002 mg/L ¹ 0.1 mg/L ²	ND 0.002	ND 0.0010	ND ND	ND 0.0010	ND 0.006	NT NT	ND 0.001	ND 0.0040	ND 0.0240	NT NT	NT NT	ND 0.0040	ND ND	NT NT	NT	ND 0.0030 (ND 0.0030	NT NT	NT	ND 0.0170 (ND N' 0.0180 N		ND 0 0.0040	ND 0.0090	NT NT	ND 0.0050	ND 0.0050	ND 0.0070	NT NT	ND N 0.0030 0.0				ND 0 0.0046	ND 0.0037	NT NT	ND 0.0150
Selenium	0.05 mg/L ¹	ND	0.0010 ND	ND	0.0010 ND	ND	NT	ND	0.0040 ND	0.0240 ND	NT	NT	0.0040 ND (0.0100	NT	NT	ND (0.0030 ND	NT	NT	0.0170 C	ND N		0.0040 ND	0.0090	NT	0.0030 ND	ND	0.0070 ND	NT	0.0030 0.00 ND N					0.0037 ND	NT	0.0130 ND
Silver	0.1 mg/L ²⁻³	ND	ND	ND	0.0005	ND	NT	ND	ND	ND		NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND
Thallium	0.002 mg/L1	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND N			ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND
Tin	22 mg/L ⁵	0.037	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND N				NT	ND	ND	ND	NT	ND N					ND	NT	ND
Vanadium Zinc	0.26 mg/L ⁵ 2 mg/L ^{2, 3}	0.0011 0.01	0.0005 0.0010	ND 0.0030	ND 0.0030	0.0080	NT NT	ND 0.0090	0.0020 0.0190	ND 11.1000		NT NT	ND 0.0070	ND ND	NT NT		0.0010 (0.0020	NT NT	NT	ND (0.0140 N°			0.0070	NT NT	0.0030	0.0020	0.0040	NT NT		010 NE 120 0.00			0.0034 0.0257	0.0034 0.0190	NT NT	0.0150 0.0330
1,1,1,2-Tetrachloroethane	70 μg/L²	ND	0.0010 ND	0.0030 ND	0.0030 ND	0.0250 ND	NT NT	0.0090 ND	0.0190 ND	ND	NT	NT	0.0070 ND	NT	NT	NT	0.0100 C	ND	NT	NT	ND (ND N		0.0080 ND	0.0170 ND	NT	0.0210 ND	0.0120 I	0.0160 ND	NT NT	0.0150 0.0 ND N				0.0257 ND	0.0190 ND	NT NT	0.0330 ND
1,1,1-Trichloroethane	200 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N			ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND
1,1,2,2-Tetrachloroethane	0.2 µg/L ²	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND
1,1,2-Trichloroethane	5 μg/L¹	ND ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT NT	ND	ND	ND	NT	ND N	D NE			ND	ND	NT	ND
1,1-Dichloroethane 1,1-Dichloroethylene	5 μg/L ^b 7 μg/L¹	ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	N I	NT NT	NI	ND ND	ND	NT NT	NI	ND ND	ND N	1 110	ND ND	ND ND	N I NT	ND ND	ND ND	ND ND	NT NT	ND N	141			ND ND	ND ND	NT NT	ND ND
1,1-Dichloroethylerie 1,2,3-Trichloropropane	7 μg/L ⁷ 0.03 μg/L ⁷	ND	ND ND	ND	ND	ND ND	NT	ND ND	ND	ND	NT	NT	ND	NT	NT	NT	ND ND	ND ND	NT	NT	ND ND	ND N		ND ND	ND	NT	ND	ND	ND ND	NT	ND N				ND ND	ND	NT	ND ND
1,2-Dibromo-3-chloropropane (DBCI	0.2 µg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N	T ND	ND	ND	NT	ND	ND	ND	NT	ND N	D NE	D ND	ND	ND	ND	NT	ND
1,2-Dibromoethane (EDB)	0.05 µg/L1	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N			ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
1,2-Dichlorobenzene	600 μg/L¹	ND ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
1,2-Dichloroethane 1,2-Dichloropropane	5 μg/L¹ 5 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NI	NT NT	N I	ND ND	ND ND	NT NT	N I	ND ND	ND N		ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND N				ND ND	ND ND	NT NT	ND ND
1,4-Dichlorobenzene	75 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND
4-Methyl-2-pentanone	μg/L	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N	T ND	ND	ND	NT	ND	ND	ND	NT	ND N	D NE	D ND		ND	ND	NT	ND
Acetone	610 µg/L ⁵	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N	D N			ND	ND	NT	ND
Acrylonitrile	0.039 µg/L ^s	ND ND	ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND	NT NT	NT NT	ND ND	NT	NT NT	NT	ND ND	ND	NT NT	NT	ND ND	ND N		ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND N	D NE		ND ND	ND ND	ND ND	NT NT	ND ND
Benzene Bromochloromethane	5 μg/L¹ 90 μg/L²	ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND	ND ND	ND ND	NT	NT	ND ND	NT	NT	NT	ND ND	ND	NT	NT	ND ND	ND N		ND ND	ND ND	NT NT	ND ND	ND ND	ND	NT	ND N				ND ND	ND	NT NT	ND ND
Bromodichloromethane (THM)	80 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N	T ND		ND	NT	ND	ND	ND	NT	ND N	D NE	D ND			ND	NT	ND
Bromoform	80 μg/L ¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
Bromomethane	10 μg/L²	ND ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N			ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
Carbon disulfide Carbon tetrachloride	1000 μg/L ⁵ 5 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	N I N T	ND ND	ND ND	NT NT	NT NT	ND ND	ND N			ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND N				ND ND	ND ND	NT NT	ND ND
Chlorobenzene	100 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N			ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND
Chlorodibromomethane (THM)	80 μg/L ¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N	T ND	ND	ND	NT	ND	ND	ND	NT	ND N	D N	D ND	ND	ND	ND	NT	ND
Chloroethane	4.6 µg/L ⁵	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N	D N			ND	ND	NT	ND
Chloroform (THM)	80 μg/L¹	ND ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
Chloromethane cis-1,2-Dichloroethene	3 μg/L² 70 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	N I NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND N		ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND N				ND ND	ND ND	NT NT	ND ND
cis-1,3-Dichloropropene	0.27 μg/L ⁶⁻³	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND
Dibromomethane	61 μg/L ⁵	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N	D NE	D ND	ND	ND	ND	NT	ND
Ethylbenzene	700 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
Methyl butyl ketone(2-Hexanone) Methyl ethyl ketone(2-Butanone)	160 µg/L ⁵	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT	NT NT	NT	ND ND	ND ND	NT NT	NT	ND ND	ND N		ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND N				ND ND	ND ND	NT NT	ND ND
Methyl iodide	4000 μg/L² μg/L	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT	NT NT	NT	ND ND	ND ND	NT NT	NT	ND ND	ND N.		ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND N					ND ND	NT NT	ND ND
Methyl tert-butyl ether (MTBE)	μg/L 20 - 40 μg/L ⁴	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N	D NE			ND	ND	NT	ND
Methylene chloride	5 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N	T ND	ND	ND	NT	ND	ND	ND	NT	ND N	D N	D ND	ND	ND	ND	NT	ND
Styrene	100 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
Tetrachloroethylene(PCE) Toluene	5 μg/L¹ 1000 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND N			ND ND	NT NT	2.1 ND	ND ND	ND ND	NT NT	ND N				ND ND	ND ND	NT NT	ND ND
trans-1,2-Dichloroethene	1000 μg/L¹	ND	ND	ND	ND ND	ND ND	NT NT	ND	ND	ND ND		NT	ND ND	NT	NT	NT	ND	ND ND	NT	NT	ND ND	ND N			ND	NT	ND ND	ND	ND	NT	ND N					ND	NT NT	ND ND
trans-1,3-Dichloropropene	0.27 µg/L ⁶⁻⁸	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
Trichloroethylene(TCE)	5 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND N		ND	ND	NT	ND	ND	ND	NT	ND N				ND	ND	NT	ND
Trichlorofluoromethane	2000 μg/L²	ND ND	ND	ND	ND	ND	NT NT	ND	ND	ND		NT NT	ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT	ND	ND N			ND	NT	ND	ND	ND	NT NT	ND N					ND	NT	ND
Vinyl acetate Vinyl chloride	410 μg/L ⁵ 2 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND		NT NT	ND ND		NT NT	NT NT			NT NT	NT NT	ND ND	ND N			ND ND	NT NT	ND ND	ND ND	ND ND	NT NT		D NE				ND ND	NT NT	ND ND
Xylenes	2 μg/L¹ 10000 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND		NT	ND		NT	NT			NT	NT		ND N			ND	NT	ND	ND	ND	NT	ND N					ND	NT	ND

= Concentration exceeds the specified Threshold Value

Note: Analytical data reported since commencement of low flow purging and sampling. Low flow puring and sampling commenced in May 2002, but no sample was taken at OW-9 at this time.

July 2002 represents the first time low flow purging and sampling was conducted at OW-9.

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.
- 7. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.
 - a. The Threshold value given for these compounds is the threshold value for a mixture of isomers. For example, cis- and trans-1,3-dichloropropylene were not identified as having individual threshold values, however 1,3-dichloropropylene was identified as having a numerical value under the National Recommended Water Quality Criteria for Human Health for consumption of water and organisms. As such, the value for total 1,3-dichloropropylene was used as the threshold value for the cis- and transisomers. The total of the two (2) isomers should not exceed this value even if each individual isomer is present at a concentration below the provided threshold value.
 - b. No threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes.

No threshold value has been provided for parameters not identified in the sources listed above

"___" = One half of the laboratory detection limit "DL" NT = Not Tested due to dry conditions at well.

TABLE 1 - OW-12 BACKGROUND WELL HISTORICAL RESULTS CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-12

Concentration (Expressed in same units as Threshold Value)

Parameter	Threshold	MAR '20	DEC '19	9 JUN'19	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13 S	EPT '13 JU	N '13 M	AR '13 DE	C '12 SE	:PT '12 JU	JN '12 M	MAR '12 D	EC '11 SI	EPT '11 J	JUN '11 M/	AR '11 DEC	C'10 SEPT'10
Authoriza	<u>Value</u>	ND	ND	ND	ND	ND	ND	0.004	ND I	0.0040	ND	0.0040	0.0050	ND	ND	up.	ND I	ID 0	0000	ND	ND	ND 0	2.0400 (0.0000	ND N	ID ND												
Antimony Arsenic	0.006 mg/L ¹ 0.010 mg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.001	ND ND	0.0210 0.0050	ND ND	0.0010	0.0250 ND	ND ND	ND ND	ND 0.0060	ND ND				1D 0		ND ND	ND ND	ND C	0.0100 (ND (ND N										
Barium	2 mg/L ¹	0.024	0.023	0.024	0.02	0.02	0.023	0.02	0.0170	0.0240	0.0260	0.0240	0.0410	0.0260	0.0670	0.0360	0.0200	0.0260	0.0250	0.0190	0.0600	0.0160	0.0210														0113 0.0	
Beryllium	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND				ND		ND	ND	ND	ND	ND	ND N	D ⁶ ND									
Cadmium	0.005 mg/L ¹	0.0005	0.0004		0.0004 ND	ND ND	ND 0.003	ND ND	ND ND	ND ND	ND 0.0030	ND 0.0010	0.0010	ND ND	ND 0.0180	ND 0.0130	ND ND	ND 0.0020	ND	ND ND	ND ND	ND	ND	ND 0.0020	ND	ND 0.0010						ND ND	ND 0.0010	ND ND	ND ND		ND N	
Chromium Cobalt	0.1 mg/L¹ 0.73 mg/L⁵	ND 0.0011	0.0001	0.0001 0.0006	0.0005	ND	0.002 0.002	ND	ND	ND	0.0030	0.0010 ND	0.0040 0.0020	ND	0.0090	0.0130	ND	0.0020 ND	ND ND	ND	ND	ND ND	0.0020 ND	0.0020 ND	0.0020 ND	ND ND						ND	0.0010 ND	ND	ND		ND ⁶ 0.0	e
Copper	1.3 mg/L ¹	ND	ND	ND	ND	0.009	ND	ND	ND	ND	ND	ND	ND	ND	0.0200	0.0150	ND	0.0330	ND	ND	ND	ND	ND	0.0020	0.0030	0.0060	0.0020 0.	0010				ND	0.0010	ND 0	0.0100		ND 0.0	013 ND
Lead	0.015 mg/L ¹	0.0004	0.0003		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0150	0.0120	ND	ND	0.0020	ND	0.0020	0.0020	0.0030		0.0020							ND	0.0020	ND	ND		ND N	
Mercury Nickel	0.002 mg/L ¹ 0.1 mg/L ²	ND 0.011	ND 0.010	ND 0.008	ND 0.01	ND 0.024	NT 0.025	ND 0.025	ND 0.0200	ND 0.0170	ND 0.0140	ND 0.0090	ND 0.0140	ND 0.0070	ND 0.0220	ND 0.0130	ND 0.0060	ND 0.0080	ND 0.0040	ND 0.0060	ND 0.0040	ND 0.0040	ND 0.0060	ND 0.0040	ND 0.0040	ND 0.0040				ND 1050 0:		ND 0030	ND 0.0050 0	ND 0.0030 0	ND 0.0070 (ND° N .0034 0.0	
Selenium	0.05 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0100	ND	ND	ND	ND	0.0060	ND		0.0110	0.0060				1D				0.0060			ND N	
Silver	0.1 mg/L ^{2·3}	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND (0.1350	ND N	
Thallium	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.4000	ND	0.0010	ND				ND		ND	ND	ND	ND		ND N							
Tin Vanadium	22 mg/L⁵ 0.26 mg/L⁵	ND ND	ND ND	ND ND	ND ND	ND ND	NT 0.001	ND ND	ND ND	ND ND	ND 0.0030	ND ND	ND 0.0040	ND ND	0.0980	ND 0.0200	0.1800 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.0020	ND ND	ND ND	ND ND				1D 1D		ND ND	ND ND	ND ND	ND ND		ND N	
Zinc	2 mg/L ^{2, 3}	0.002	ND	0.001	ND	0.007	0.026	0.009	0.0070	0.0060	0.0130	0.0100	0.0220	ND	0.0500	0.0420	ND	ND	0.0050	0.0070	ND	ND	ND	ND	ND	ND									0.0160		.0170 0.0	
1,1,1,2-Tetrachloroethane	70 μg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
1,1,1-Trichloroethane	200 μg/L¹	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	0.2 μg/L² 5 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND				ND ND		ND ND	ND ND	ND ND	ND ND		ND N	
1,1-Dichloroethane	5 μg/L ^b	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
1,1-Dichloroethylene	7 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
1,2,3-Trichloropropane	0.03 µg/L ⁷	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	0.2 μg/L¹ 0.05 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						ND ND	ND ND	ND ND	ND ND		ND N	
1,2-Dichlorobenzene	600 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
1,2-Dichloroethane	5 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND N	ID ND
1,2-Dichloropropane	5 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
1,4-Dichlorobenzene 4-Methyl-2-pentanone	75 μg/L¹ μg/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						ND ND	ND ND	ND ND	ND ND		ND N	
Acetone	μg/L 610 μg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Acrylonitrile	0.039 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	ID ND
Benzene	5 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND		ND	ND	ND	ND		ND N	
Bromochloromethane Bromodichloromethane (THM)	90 μg/L² 80 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND N	
Bromoform	80 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Bromomethane	10 μg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND N	ID ND
Carbon disulfide	1000 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Carbon tetrachloride Chlorobenzene	5 μg/L¹ 100 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						ND ND	ND ND	ND ND	ND ND		ND N	
Chlorodibromomethane (THM)	80 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Chloroethane	4.6 μg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND N	ID ND
Chloroform	80 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Chloromethane cis-1,2-Dichloroethene	3 μg/L² 70 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						ND ND	ND ND	ND ND	ND ND		ND N	
cis-1,3-Dichloropropene	0.27 μg/L ⁶⁻⁸	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Dibromomethane	61 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Ethylbenzene Methyl butyl ketene(2 Heyenene)	700 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND						ND	ND	ND ND	ND		ND N	
Methyl butyl ketone(2-Hexanone) Methyl ethyl ketone(2-Butanone)	160 µg/L⁵ 4000 µg/L²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						ND ND	ND ND	ND ND	ND ND		ND N	
Methyl iodide	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Methylene chloride	5 μg/L¹	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND		ND N	
Styrene Tetrachloroethylene(PCE)	100 μg/L¹ 5 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	1 DN 1 DN	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND N	ID ND ID ND
Toluene	1000 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND I	ND	ND	ND	ND	ND	ND	ND		ID ND
trans-1,2-Dichloroethene	100 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND			ID ND
trans-1,3-Dichloropropene	0.27 µg/L ^{6- a}	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND						ND		ND	ND			ID ND
trans-1,4-Dichloro-2-butene Trichloroethylene(TCE)	μg/L 5 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						ND ND		ND ND	ND ND			ID ND ID ND
Trichlorofluoromethane	2000 μg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND		ND	ND			ID ND
Vinyl acetate	410 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND N	ID ND
Vinyl chloride	2 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND	ND	ND	ND			ID ND
Xylenes	10000 μg/L¹ = Conce	ND ntration av	ND	ND appoified T	ND brookeld V	ND (alua	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND.	ND	ND	ND	ND	ND	ND	ND N	ID ND

= Concentration exceeds the specified Threshold Value

No threshold value has been provided for parameters not identified in the sources listed above

^{1.} Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
6. Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.
7. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1,3-dichloropropylene was identified as having a numerical value under the National Recommended Water Quality Criteria for Human Health for consumption of water and organisms. As such, the value for total 1,3-dichloropropylene was used as the threshold value for the cis- and trans- isomers. The total of the two (2) isomers should not exceed this value even if each individual isomer is present at a concentration below the provided threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes.

[&]quot;___" = One half of the laboratory detection limit "DL" NT = Not Tested due to dry conditions at well.

TABLE 1 - OW-13 SUMMARY OF GROUNDWATER MONITORING RESULTS CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-13

Concentration (Expressed in same units as Threshold Value)

	<u>Parameter</u>	<u>Threshold</u> <u>Value</u>	MAR '20	DEC '19	<u>JUN '19</u>	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17	<u>JUN '17</u>	MAR '17	DEC '16	SEP '16	<u>JUN '16</u>	MAR '16	DEC '15	SEP '15	<u>JUN '15</u>	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT '12	<u>JUN '12</u>	MAR '12	DEC '11	SEPT '11	<u>JUN '11</u>	MAR '11	DEC '10
Part	Antimony		0.0001	ND	ND	ND	0.002	0.002	0.002	ND	0.0360	ND	0.0020	0.0080	ND	0.0110	ND	ND	ND	ND	ND	ND	ND	ND	0.0050	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0100	0.0200	ND	ND
	Arsenic		0.0065	0.0104	0.0069	0.0081	0.01	0.01	0.02	0.0070	ND	0.0050	0.0200	ND	ND	0.0100	ND	0.0190	0.0100	0.0110	0.0070	0.0040	0.0200	0.0070	ND	0.0140	0.0160	0.0070	0.0080	0.0070	ND		0.0060	0.0050	0.0050	0.0090	ND	0.0096	0.0094
Section Sect	,													110		110		110																					
Section Sect																																							
Mary Series	Copper			0.004	0.003	0.004	ND	ND							ND	0.0900	ND	0.0060				0.0050	0.0730		0.0050	0.0080	0.0230	0.0030	0.0050	ND			0.0060	0.0040		0.0090	0.0300	0.0028	
Section Sect																																							
		-																																					
Final Properties Final Prope																																							
From 1985 1995 1995 1995 1995 1995 1995 1995	Silver	-		ND				ND			ND	0.0020	ND	ND	ND	ND	ND	ND	ND			0.0020	ND	ND	0.0010	0.0020	0.0020		0.0010	0.0010		0.0020	ND	0.0020	ND	0.0030	0.0340		
Part	Thallium	0.002 mg/L1													ND	ND	ND		ND			ND				ND		ND	ND										
		-																																					
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.																																							
1.5. 1.5.																																							
1.5 1.5			ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND		ND			ND	ND	ND		ND		ND		ND		ND							
	1,1,2,2-Tetrachloroethane	0.2 µg/L ²				ND									ND											ND							ND						
1.2.1 Part Contensioner (1968) (1974)	,																																						
1.2. December substanding subs																																							
1.5. A. December - Marchine - Mar																																							
1.5-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	1,2-Dibromoethane (EDB)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND		ND		ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND		
5 1 1 1 1 1 1 1 1 1																																							
																																					ND 1.0		
Activaries 151 jugls 1. No. 100 1			ND																																		ND		
Extractive Heaves File F	, ·			ND		ND					ND				ND				ND		ND					ND			ND	ND			ND				ND		
Demonsferieme Tem May																																							
Extensione-leme																																							
Demonshame 19 jugick No																																							
Cubin cubi	Bromomethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chi-chi-chi-chi-chi-chi-chi-chi-chi-chi-c																																							
Chi-confestement Chi-confest																			ND																				
Chierostemane 48 juglit No			-																7.4 ND																				
Chi-chi-chi-chi-chi-chi-chi-chi-chi-chi-c	, ,																																						
is-13-Dichforoproproproproproproproproproproproprop			ND	ND		ND		ND			ND				ND		ND		ND		ND	ND		ND		ND		ND	ND	ND					ND		ND		
Color Colo	***************************************	3 µg/L²				ND		ND							ND		ND									ND							ND				ND		
Disconsisteration Disc																																							
Ethylebrace 700 jugl.* ND																																							
Methyl butyl ketone(2-Hexanone) 160 \bar{y}\bar{y}\bar{z}\close{\mathcal{bethy}\close{\mathcal{bethy}}\close{\mathcal{bethy}}\close{\mathcal{bethy}}\close{\mathcal{bethy}}\close{\mathcal{bethy}}\close{\mathcal{bethy}\close{\mathcal{bethy}}\close{\mathcal{bethy}}\close{\mathcal{bethy}\close{\mathcal{bethy}}\close{\mathcal{bethy}\close{\mathcal{bethy}}\close{\mathcal{bethy}\close{\mathcal{bethy}}\close{\mathcal{bethy}\close{\mathcal{bethy}\close{\mathcal{bethy}\close{\mathcal{bethy}\close{\mathcal{bethy}\close{\mathcal{bethy}\mathcal{																																							
Methyl lodide																																							
Methylene chloride	Methyl ethyl ketone(2-Butanone)	4000 µg/L ²		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chlóride 5 μg/L¹ ND																																							
Styrene 100 µg/L¹ ND			•																																				
Tetrachloroethylene(PCE) $5 \mu g/L^1$ ND																																							
Toluene 1000 µg/L¹ ND																																							
	* * *		ND																																				
		100 μg/L ¹																																					
Trichloroethylene(TCE) 5 µg/L¹ ND																																							
Trichlorofluoromethane 2000 µg/L² ND																																							
Vinyl acetate 410 µg/L ⁸ ND																																							
Vinyl chloride 2 µg/L' ND																																							
Videos 40000 unit 1 ND		2 µg/L¹			ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND					ND	ND	ND		ND	ND			ND	ND		ND	ND	ND	ND	ND	ND
באן או	Xylenes	10000 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Concentration exceeds the specified Threshold Value

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.
- 7. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.
 - a. The Threshold value given for these compounds is the threshold value for a mixture of isomers. For example, cis- and trans-1,3-dichloropropylene were not identified as having individual threshold values, however 1,3-dichloropropylene was identified as having a numerical value under the National Recommended Water Quality Criteria for Human Health for consumption of water and organisms. As such, the value for total 1,3-dichloropropylene was used as the threshold value for the cis- and trans- isomers. The total of the two (2) isomers should not exceed this value even if each individual isomer is present at a concentration below the provided threshold value.
 - b. No threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes.

No threshold value has been provided for parameters not identified in the sources listed above

= One half of the laboratory detection limit "DL"

NT = Not Tested due to dry conditions at well.

TABLE 1 - OW-14 SUMMARY OF GROUNDWATER MONITORING RESULTS CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-14

Concentration (Expressed in same units as Threshold Value)

<u>Parameter</u>	Threshold <u>Value</u>	MAR '2	0 DEC '1	9 JUN '1	9 MAR	19 DEC '18	SEP '18	8 <u>JUN '18</u>	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14 S	SEP '14	JUN '14 N	MAR '14 D	EC '13 S	SEP '13	JUN '13	MAR '13	DEC '12	SEP '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT '10
Antimony	0.006 mg/L ¹	0.0004	0.000	2 0.0001	1 0.000	0.005	NT	ND	ND	0.0350	NT	0.0050	0.0410	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	0.0060	ND	ND	0.0110	0.0170	ND	ND	NT
Arsenic	0.010 mg/L1	0.0015	0.0004	1 0.0036	0.00	8 ND	NT	0.01	ND	0.0030	NT	0.0200	0.0120	ND	NT	ND	0.0070	0.0050	0.0050	NT	ND	ND	NT	ND	ND	ND	NT	0.0060	ND	ND	NT	ND	ND	ND	0.0060	ND	0.0074	ND	NT
Barium	2 mg/L ¹	0.19					NT	0.155		0.1990	NT	0.2400	0.2490	0.2290	NT	0.1380	0.1750	0.1980	0.1140	NT	0.2020	0.0910	NT			0.0790		0.1440	0.1760	0.1370	NT			0.1470	0.1610	0.2100		0.2030	NT
Beryllium	0.004 mg/L¹	ND	ND 0.000	ND	ND		NT	ND	ND 0.0050	ND	NT	0.0030	ND	ND	NT NT	0.0010	0.0010	ND 0.0000	0.0010	NT	ND	ND	NT	ND		0.0010	NT	ND	ND	ND	NT NT	ND	ND 0.0040	ND 0.0000	ND	ND	ND ND ⁶	0.0010 ND ⁶	NT NT
Cadmium Chromium	0.005 mg/L ¹ 0.1 mg/L ¹	ND 0.0005	0.000		ND 0.000		NT NT	0.006	0.0050	ND 0.0020	NT NT	0.0050	0.0060	ND ND	NT NT	ND 0.0110	0.0070	0.0080	0.0060 0.0170	NT NT	ND 0.0050	ND 0.0050	NT NT		0.0010 0.0010 0	ND 0.0080	NT NT	ND ND	0.0020 0.0050	ND ND	NT NT	ND ND	0.0040 ND	0.0030 ND	0.0030 ND	ND ND		0.0065	NT NT
Cobalt	0.73 mg/L ⁵	0.0064					NT	0.001	0.0000	0.0020	NT	0.0010	0.0020	0.0360	NT	0.0110	0.0030	0.0100	0.0170	NT	0.0030	0.0120	NT			0.0120		0.0080	0.0050	0.0370	NT		0.0100	0.0100	0.0160	0.0090		0.0003	NT
Copper	1.3 mg/L ¹	ND	0.002	ND	ND	0.007	NT	ND	0.0090	ND	NT	0.0100	ND	0.0200	NT	0.0010	0.0010	ND	0.0170	NT	0.0100	0.0090	NT	0.0070	0.0050	0.0200	NT	0.0030	0.0080	0.0100	NT	ND	ND	0.0010	0.0090	ND	0.0049	0.0140	NT
Lead	0.015 mg/L ¹	0.0003	0.0014	0.0002	2 0.00	1 ND	NT	ND	0.0060	ND	NT	0.0170	ND	ND	NT	0.0160	0.0070	ND	0.0090	NT	0.0050	0.0050	NT	0.0040	0.0040	0.0070	NT	0.0020	0.0050	0.0030	NT	0.0020	ND	0.0090	0.0020	ND	ND	0.0039	NT
Mercury	0.002 mg/L1	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Nickel	0.1 mg/L ²	0.012	0.007	0.011			NT	0.012	0.0220	0.0320	NT	0.0220	0.0470	0.0400	NT	0.0160	0.0160	0.0170	0.0200	NT	0.0270	0.0180	NT			0.0200	NT	0.0120	0.0200	0.0350	NT	0.0190	0.0170	0.0150	0.0180	0.0180		0.0407	NT
Selenium	0.05 mg/L ¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND 0.0040	NT	0.0350	0.0140	NT	ND		0.0260	NT	ND	ND	ND	NT NT	0.0200	0.0310	0.0240	0.0300	ND	ND	ND	NT NT
Silver Thallium	0.1 mg/L ^{2.3} 0.002 mg/L ¹	ND ND	ND ND	ND ND	0.000 ND	02 ND ND	NT NT	ND ND	ND 0.0003	ND 0.0003	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	0.0040	NT NT	0.0020 ND	ND ND	NT NT	0.0020 ND	0.0020 ND	ND ND	NT NT	ND ND	0.0020 ND	ND ND	NT NT	ND ND	0.0040 ND	ND 0.0010	0.0050 ND	ND ND	ND ND	ND ND	NT NT
Tin	0.002 mg/L⁵ 22 mg/L⁵	0.055		ND	ND		NT	ND	ND	0.0003 ND	NT	ND	ND	ND	NT	0.0350	ND	0.0070	0.0010	NT	ND	ND	NT			0.0180	NT	0.0310	ND	ND	NT	ND	ND	ND	ND	ND	ND ⁶	ND	NT
Vanadium	0.26 mg/L ⁵	0.0005		0.0006			NT	ND	0.0070	0.0030	NT	0.0070	ND	ND	NT	0.0170	ND	ND	0.0140	NT	0.0080	0.0050	NT		0.0020	0.0080	NT	0.0030	0.0060	ND	NT	ND	ND	ND	ND	0.0290		0.0063	NT
Zinc	2 mg/L ^{2·3}	0.003	0.004	0.005	0.00	4 0.014	NT	0.031	0.0480	0.0160	NT	0.0600	0.0230	0.0300	NT	0.0280	0.0170	0.0140	0.0680	NT	0.0240	0.0190	NT	0.0070	0.0100	0.0310	NT	0.0120	0.0310	0.0210	NT	0.0160	0.0070	0.0070	0.0270	ND	0.0453	0.0570	NT
1,1,1,2-Tetrachloroethane	70 μg/L²	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,1,1-Trichloroethane	200 μg/L¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,1,2,2-Tetrachloroethane	0.2 µg/L²	ND	ND	ND ND	ND ND		NT	ND ND	ND ND	ND ND	NT	ND	ND	ND ND	NT NT	ND ND	ND ND	ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	NT NT
1,1,2-Trichloroethane 1,1-Dichloroethane	5 μg/L¹ 5 μg/L♭	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	N I N T	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NI NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	N I NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT
1,1-Dichloroethylene	5 μg/L ¹	ND	ND	ND ND	ND		NT	ND ND	ND	ND	NT	ND	ND ND	ND	NT	ND	ND	ND ND	ND ND	NT	ND ND	ND	NT	ND	ND	ND	NT	ND ND	ND	ND	NT	ND ND	ND	ND ND	ND	ND	ND ND	ND	NT
1,1-Dichloroethylerie 1,2,3-Trichloropropane	7 μg/L ⁷	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,2-Dibromo-3-chloropropane (DBCP)	0.2 µg/L¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,2-Dibromoethane (EDB)	0.05 µg/L1	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,2-Dichlorobenzene	600 µg/L1	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,2-Dichloroethane	5 μg/L¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,2-Dichloropropane	5 μg/L¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
1,4-Dichlorobenzene 4-Methyl-2-pentanone	75 μg/L¹ ua/L	2 ND	2.02 ND	2.04 ND	2.1 ND	2.38 ND	NT NT	2.62 ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	1.8 ND	ND ND	ND ND	2.2 ND	NT NT	3.3 ND	ND ND	NT NT	3.4 ND	ND ND	ND ND	NT NT	2.2 ND	2.9 ND	1.8 ND	NT NT	1.4 ND	2.7 ND	2.2 ND	3.2 ND	1.8 ND	2.7 ND	1.9 ND	NT NT
Acetone	μg/L 610 μg/L⁵	6	ND	20.96		ND	NT	ND	ND	ND	NT	ND	6.9	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	6.4	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Acrylonitrile	0.039 µg/L⁵	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Benzene	5 μg/L¹	2	1.56	2.24	2.1	2.28	NT	2.77	ND	ND	NT	3.2	4.1	ND	NT	2.7	3.1	3.9	2.0	NT	3.5	ND	NT	3.3	3.6	ND	NT	2.9	4.3	1.9	NT	1.8	3.5	3.6	4.1	2.1	3.7	1.7	NT
Bromochloromethane	90 μg/L²	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Bromodichloromethane (THM)	80 μg/L ¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Bromoform	80 μg/L¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Bromomethane Carbon disulfide	10 μg/L²	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT
Carbon disulide Carbon tetrachloride	1000 µg/L⁵ 5 µg/L¹	ND	ND	ND ND	ND		NT	ND ND	ND	ND ND	NT	ND	ND	ND	NT	ND ND	ND	ND ND	ND ND	NT	ND ND	ND	NT	ND	ND ND	ND	NT	ND ND	ND	ND	NT	ND	ND	ND ND	ND	ND	ND ND	ND	NT
Chlorobenzene	100 μg/L ¹	10	8.85	10.74			NT	13.3	10.8	ND	NT	13.42	15.6	ND	NT	12.5	13.5	15.4	10.7	NT	16.7	5.3	NT	15.7	15.7	3.2	NT	11.3	19.1	8.0	NT	7.0	14.3	14.6	16.5	7.1	15.3	6.1	NT
Chlorodibromomethane (THM)	80 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Chloroethane	4.6 μg/L⁵	1	ND	ND	ND	ND	NT	ND	ND	ND	NT	2.27	ND	ND	NT	3.3	ND	2.0	1.5	NT	ND	ND	NT	ND	ND	ND	NT	ND	2.5	ND	NT	ND	1.4	2.4	ND	1.6	1.3	ND	NT
Chloroform	80 μg/L ¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Chloromethane	3 μg/L²	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	70 µg/L¹	ND ND	ND ND	ND ND	ND ND		NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT
Dibromomethane	0.27 µg/L ⁶⁻⁸ 61 µg/L⁵	ND ND	ND ND	ND ND	ND ND	ND ND	N I N T	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT
Ethylbenzene	700 μg/L¹	ND	ND	ND	ND	ND ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Methyl butyl ketone(2-Hexanone)	160 µg/L⁵	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Methyl ethyl ketone(2-Butanone)	4000 μg/L²	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Methyl iodide	μg/L	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	6.0	5.4	5.07	5.0		NT	6.23	9.4	ND	NT	7.08	16.5	ND	NT	6.7	7.7	12.3	6.9	NT	11.2	1.7	NT	6.6	14.8	4.3	NT	6.9	11.9	11.0	NT	7.5	8.4	6.6	12.4	7.0	16.3	12.3	NT
Methylene chloride	5 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT NT	ND	ND	ND	ND	ND	ND	ND	NT
Styrene Tetrachloroethylene(PCE)	100 μg/L¹ 5 μg/L¹	ND ND	ND ND	ND ND	ND ND		NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	N I NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT
Toluene	1000 μg/L¹	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
trans-1,2-Dichloroethene	100 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
trans-1,3-Dichloropropene	0.27 µg/L ^{6, a}	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Trichloroethylene(TCE)	5 μg/L¹	ND	ND	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Trichlorofluoromethane	2000 μg/L²	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Vinyl acetate	410 µg/L⁵	ND	ND	ND	ND		NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT
Vinyl chloride	2 μg/L¹	ND	ND	ND ND	ND ND		NT	ND ND	ND	ND ND	NT	ND	ND	ND	NT NT	ND ND	ND	ND	ND	NT	ND ND	ND	NT	ND	ND ND	ND	NT	ND ND	ND ND	ND	NT	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	NT
Xylenes	10000 μg/L¹	ND	ND			ND	NT	ND	ND	ND	NT	ND	ND	ND	ΝI	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT

= Concentration exceeds the specified Threshold Value

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.
- 7. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.
 - a. The Threshold value given for these compounds is the threshold value for a mixture of isomers. For example, cis- and trans-1,3-dichloropropylene were not identified as having individual threshold values, however 1,3-dichloropropylene was identified as having a numerical value under the National Recommended Water Quality Criteria for Human Health for consumption of water and organisms. As such, the value for total 1,3-dichloropropylene was used as the threshold value for the cis- and trans- isomers. The total of the two (2) isomers should not exceed this value even if each individual isomer is present at a concentration below the provided threshold value.
 - b. No threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes.

No threshold value has been provided for parameters not identified in the sources listed above

- "___" = One half of the laboratory detection limit "DL"

 NT = Not Tested due to dry conditions at well.

TABLE 1 - OW-15 SUMMARY OF GROUNDWATER MONITORING RESULTS CONSTITUENTS FOR DETECTION MONITORING

MONITORING WELL OW-15

Concentration (Expressed in same units as Threshold Value)

<u>Parameter</u>	Threshold	MAR '20	DEC'19	<u>JUN'19</u>	MAR '19	DEC '18	SEP '18	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11 N	MAR '11	DEC '10 SEP'	<u>'T '10</u>
Authorities	<u>Value</u>	0.0004	ND	ND	ND	0.0040	0.0040	ND	ND	0.0000	ND	0.0000	0.0040	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	0.0000	0.0070	0.0000	0.0400	ND	ND	ND N	ID.
Antimony Arsenic	0.006 mg/L ¹ 0.010 mg/L ¹	0.0001 0.0066	ND 0.0150	ND 0.0205	ND 0.0352	0.0040	0.0040	ND 0.03		0.0300	ND 0.0300	0.0020	0.0340 ND	ND ND	ND 0.0700	ND 0.0130	ND 0.0320	ND 0.0170	ND ND	ND ND	ND 0.0160	ND ND	ND 0.0350	ND ND	ND ND	ND 0.0050	ND 0.0280	ND 0.0130	ND 0.0180	ND 0.0040	ND 0.0300	0.0060 ND		0.0060 0.0110	0.0400 ND	ND ND	ND 0.0023	ND N 0.0338 0.03	ND 0362
Barium	2 mg/L ¹	0.191	0.151	0.148	0.158	0.212	0.084	0.096	0.1280	0.1240	0.0850	0.0890		0.1560	0.3100	0.0600		0.1840	0.1390	0.2230		0.1350				0.1340				0.1340		0.2360			0.1930				1110
Beryllium	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	0.0010	ND	ND	0.0050	ND		ID ₆																
Cadmium	0.005 mg/L ¹	ND 0.0009	ND 0.0010	ND 0.0009	ND 0.0007	0.008 ND	0.007 ND	0.010 ND	0.0090 ND	ND ND	0.0100	0.0050 ND	0.0100	0.0050 ND	0.0460 0.1180	ND 0.0020	0.0100	0.0080	0.0070	ND 0.0010	ND ND	ND	ND 0.0030	0.0100	0.0010 0.0030	ND ND	0.0010 ND	ND ND	0.0040 ND	ND ND	0.0020	ND ND	0.0060	0.0010 ND	0.0040 ND	ND ND	ND ND	ND ⁶ NI ND ⁶ 0.00	ID ⁶
Chromium Cobalt	0.1 mg/L¹ 0.73 mg/L⁵	0.0009	0.0010	0.0009	0.0007		0.014	0.012	0.0100	0.0090	0.0030	0.0130	0.0020	ND	0.1180	0.0020	0.0010	0.0050	0.0020	0.0010	0.0120	ND ND	0.0030	0.0030	0.0030 ND	0.0010	0.0140	0.0100		0.0020		0.0030	0.0020	0.0090	0.0020			0.0185 0.0	
Copper	1.3 mg/L ¹	ND	0.0030	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1400	ND	ND	ND	ND	ND	0.0020	ND	ND	0.0080	0.0040	0.0240	0.0050	0.0060	0.0060	ND	ND	ND	0.0030	0.0040	0.0100	0.2400	ND	0.0012 0.00	059
Lead	0.015 mg/L ¹	0.0003	0.0003	0.0003	0.0003	0.0030	0.0020	ND	0.0020	ND	ND	0.0020		0.0050	0.1350	0.0140	ND	ND	ND	0.0040	0.0020	0.0040	0.0110	0.0040	0.0020	0.0030	0.0020	0.0050	_	0.0030		0.0020	0.0020	0.0010	0.0030	ND		0.0025 0.00	
Mercury Nickel	0.002 mg/L ¹ 0.1 mg/L ²	ND 0.012	ND 0.016	ND 0.025	ND 0.025	ND 0.017	ND 0.029	ND 0.023	ND 0.0200	ND 0.0510	ND 0.0350	ND 0.0240	ND 0.0520	ND 0.0110	ND 0.6610	ND 0.0140	ND 0.0290	ND 0.0170	ND 0.0100	ND 0.0110	ND 0.0180	ND 0.0080	ND 0.0330	ND 0.0120	ND 0.0070	ND 0.0110	ND 0.0230	ND 0.0190	ND 0.0150	0.0070 ND	ND 0.0270	ND 0.0110	ND 0.0130	ND 0.0160	ND 0.0090	ND 0.0140	ND 0.0086		ND 0396
Selenium	0.05 mg/L ¹	ND	ND	0.023 ND	ND	ND	ND	ND	ND	ND	0.0550 ND	ND	0.0320 ND	ND	ND	ND	0.0290 ND	ND	ND	ND	0.0220	ND	ND	ND	0.0070 ND	0.0110	ND	ND	ND	ND		0.0110	0.0180		0.0190	0.0400	ND		ND
Silver	0.1 mg/L ²⁻³	ND	ND	ND	0.0001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0030	0.0020	0.0150	0.0030		0.0050	0.0020	0.0030	0.0030	ND	0.0040	ND	0.0050	ND	0.0050	ND	ND		ID ⁶
Thallium	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND ID6
Tin Vanadium	22 mg/L⁵ 0.26 mg/L⁵	0.0150 0.0006	ND 0.0006	ND 0.0007	ND 0.0010	ND 0.0150	ND 0.0110	ND ND	ND 0.0060	ND 0.0040	ND 0.0110	ND ND	ND ND	ND 0.0150	1.0600 0.1560	ND 0.0050	ND ND	0.0470 ND	ND 0.0020	ND ND	ND 0.0040	ND 0.0050	ND 0.0060	ND 0.0040	0.0270	0.0780	0.0210	0.0400	ND 0.0040	ND 0.0040	ND 0.0030	ND 0.0030	ND 0.0020	ND 0.0020	ND ND	ND 0.0160	ND ⁶ ND	ND ⁶ NI 0.0012 0.00	ID _e
Zinc	2 mg/L ²⁻³	0.0030	0.0100	0.0040	0.0030	0.0150	0.0110	0.032	0.0210	0.0100	0.0300	0.0200	0.0140	ND	0.9700	ND	0.0120	0.0150	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	0.0150	0.0200	ND	0.0280	0.0090	0.0120	0.0060	0.0170			0.0147 0.03	
1,1,1,2-Tetrachloroethane	70 μg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,1-Trichloroethane	200 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,2,2-Tetrachloroethane	0.2 μg/L² 5 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
1,1-Dichloroethane	5 μg/L ^b	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1-Dichloroethylene	7 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,2,3-Trichloropropane	0.03 μg/L ⁷	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	0.2 µg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
1,2-Dishornoetriane (EDB) 1,2-Dishlorobenzene	0.05 μg/L¹ 600 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	1.0	1.3	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND		ND ND
1,2-Dichloroethane	5 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND
1,2-Dichloropropane	5 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,4-Dichlorobenzene 4-Methyl-2-pentanone	75 μg/L¹	2.00 ND	2.69 ND	2.64 ND	2.1 ND	3.06 ND	ND ND	ND ND	ND ND	ND ND	2.51 ND	ND ND	1.6 ND	ND ND	ND ND	2.1 ND	ND ND	ND ND	3.4 ND	2.9 ND	3.0 ND	ND ND	ND ND	3.4 ND	ND ND	ND ND	2.1 ND	2.3 ND	2.6 ND	3.2 ND	1.9 ND	1.9 ND	2.3 ND	1.5 ND	3.1 ND	2.1 ND	2.9 ND	2.4 2. ND N	2.4 ND
Acetone	μg/L 610 μg/L⁵	ND	ND	19.19	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	5.2	ND	ND	6.7	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	18.6	ND	ND	ND	ND	ND	ND	ND	6.8		ND ND
Acrylonitrile	0.039 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND
Benzene	5 μg/L¹	1.0	1.9	1.94	1.5	1.76	ND	1.67	ND	ND	3.59	2.83	ND	ND	3.4	3.2	2.1	3.2	1.7	2.0	2.8	2.8	3.6	2.2	2.1	2.8	3.4	2.7	2.8	2.5	3.4	3.1	2.7	3.2	3.5	2.1	1.9		3.5
Bromochloromethane Bromodichloromethane (THM)	90 μg/L² 80 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.0 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
Bromoform	80 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Bromomethane	10 μg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND
Carbon disulfide	1000 μg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Carbon tetrachloride Chlorobenzene	5 μg/L¹ 100 μg/L¹	ND 15.00	ND 16.99	ND 14.4	ND 13.2	ND 15.49	ND 14.0	ND 12.72	ND 17	ND 15.2	ND 18.19	ND 21.26	ND 17.4	ND 21.5	ND 16.0	ND 16.8	ND 17.7	ND 18.3	ND 21.0	ND 21.1	ND 19.7	ND 26.9	ND 19.0	ND 27.0	ND 25.0	ND 32.5	ND 18.9	ND 14.3	ND 20.0	ND 29.0	ND 15.5	ND 12.4	ND 16.9	ND 15.8	ND 25.0	ND 11.8	ND 23.1		ND 6.9
Chlorodibromomethane (THM)	80 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.9 ND
Chloroethane	4.6 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.8	ND	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND 2.	2.9						
Chloroform	80 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Chloromethane cis-1,2-Dichloroethene	3 μg/L² 70 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
cis-1,3-Dichloropropene	0.27 µg/L ^{6, a}	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Dibromomethane	61 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND
Ethylbenzene	700 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Methyl butyl ketone(2-Hexanone) Methyl ethyl ketone(2-Butanone)	160 µg/L⁵ 4000 µg/L²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
Methyl iodide	4000 μg/L μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Methyl tert-butyl ether (MTBE)	20 - 40 µg/L⁴	6.00	3.67	9.38	7.5	3.69	7.0	6.61	ND	6.3	7.52	7.69	8.5	ND	7.9	7.9	6.8	7.8	6.7	12.2	7.1	4.2	6.0	9.4	5.4	7.7	8.3	10.3	6.1	3.9	8.8	9.5	9.5	5.5	7.5	7.1	7.9		7.6
Methylene chloride	5 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Styrene Tetrachloroethylene(PCE)	100 μg/L¹ 5 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
Toluene	3 μg/L 1000 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND ND
trans-1,2-Dichloroethene	100 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND
trans-1,3-Dichloropropene	0.27 µg/L ^{6, 8}	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
trans-1,4-Dichloro-2-butene Trichloroethylene(TCE)	μg/L 5 μg/L¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
Trichlorofluoromethane	2000 μg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND ND
Vinyl acetate	410 µg/L⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Vinyl chloride	2 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Xylenes	10000 μg/L¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	3.3	ND	ND	2.2	5.4	ND	ND	3.1	ND	6.1	2.0	3.9	ND N	ND

⁼ Concentration exceeds the specified Threshold Value

No threshold value has been provided for parameters not identified in the sources listed above

NT = Not Tested due to dry conditions at well.

^{1.} Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{2.} Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{3.} Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{4.} Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{5.} Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

^{6.} Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.

^{7.} Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

1. Thr

b. No threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes.

⁼ One half of the laboratory detection limit "DL"

TABLE 1 - OW-16 SUMMARY OF GROUNDWATER MONITORING RESULTS CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-16

Concentration (Expressed in same units as Threshold Value)

<u>Parameter</u>		shold lue	MAR '20	DEC '19	<u>JUN '19</u>	MAR '19	DEC '18	SEP '18	<u>JUN '18</u>	MAR '18	NOV '17
Antimony	0.006	mg/L¹	ND	NT	ND	ND	ND	ND	0.002	ND	ND
Arsenic	0.010		ND	NT	ND	ND	ND	ND	0.01	ND	ND
Barium	2	mg/L1	0.009	NT	0.008	0.014	0.017	0.027	0.011	0.0190	0.1000
Beryllium	0.004	mg/L1	ND	NT	0.0002	0.0001	ND	ND	ND	ND	ND
Cadmium	0.005	mg/L1	0.0002	NT	0.0002	0.0003	ND	ND	ND	ND	ND
Chromium	0.1	mg/L1	ND	NT	ND	ND	0.003	0.003	0.004	0.0060	0.0050
Cobalt	0.73	mg/L⁵	0.0007	NT	0.0009	0.0008	0.006	0.004	0.002	0.0050	0.0050
Copper	1.3	mg/L1	ND	NT	ND	ND	ND	ND	ND	ND	ND
Lead	0.015		ND	NT	ND	ND	ND	ND	ND	ND	ND
Mercury	0.002	mg/L1	ND	NT	ND	ND	ND	NT	ND	ND	ND
Nickel		mg/L²	0.002	NT	0.002	0.002	0.013	0.01	0.009	0.0100	0.0100
Selenium		mg/L1	ND	NT	ND	ND	0.009	0.003	ND	0.0100	0.0050
Silver		mg/L ^{2·3}	ND	NT	ND	0.0001	ND	ND	ND	ND	ND
Thallium	0.002		ND	NT	ND	ND	ND	ND	ND	0.0003	ND
Tin		mg/L ⁵	ND	NT	ND	ND	ND	NT	ND	ND	ND
Vanadium		mg/L ⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND
Zinc		mg/L ²⁻³	0.003	NT	0.004	0.004	0.025	0.019	0.022	0.024	0.0210
1,1,1,2-Tetrachloroethane		μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane		μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane		μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5		ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane 1,1-Dichloroethylene	5		ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
-		μg/L¹		NT		ND ND		ND			
1,2,3-Trichloropropane		µg/L ⁷	ND ND	NT	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)		µg/L¹	ND ND	NT	ND	ND ND	ND	ND	ND	ND	ND ND
1.2-Dichlorobenzene		μg/L¹ μg/L¹	ND	NT	ND	ND ND	ND	ND	ND	ND	ND
1,2-Dichloropenzene 1,2-Dichloroethane		μg/L¹ μg/L¹	ND ND	NT	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
1,2-Dichloropropane		μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	7.5	μg/L	ND	NT	ND	ND	ND	ND	ND	ND	ND
Acetone	610	µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	0.039		ND	NT	ND	ND	ND	ND	ND	ND	ND
Benzene		μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	90		ND	NT	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM)	80		ND	NT	ND	ND	ND	ND	ND	ND	ND
Bromoform	80		ND	NT	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10	μg/L²	ND	NT	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	1000	µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5	μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	100	μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80	μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Chloroethane	4.6	µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND
Chloroform	80	μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Chloromethane	3		ND	NT	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70	μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.27	µg/L ^{6- a}	ND	NT	ND	ND	ND	ND	ND	ND	ND
Dibromomethane		µg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene		μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)		μg/L⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)	4000		ND	NT	ND	ND	ND	ND	ND	ND	ND
Methyl iodide		μg/L	ND	NT	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40		ND	NT	4.9	4.67	3.77	3.42	6.53	7.8	4.6
Methylene chloride		μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Styrene		μg/L¹	ND	NT	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)		μg/L¹	ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene		µg/L¹	ND	NT NT				ND ND			ND ND
trans-1,2-Dichloroethene trans-1,3-Dichloropropene		μg/L¹ μg/L ^{ε. a}	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
/ · · · · · · · · · · · · · · · · · · ·	0.27		ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,4-Dichloro-2-butene	_	µg/L	ND	NT	ND ND	ND ND	ND ND	ND ND	ND	ND	ND
Trichloroethylene(TCE)		µg/L¹	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane	2000								ND ND		
Vinyl acetate Vinyl chloride		μg/L ⁵ μg/L ¹	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes	10000		ND ND	NT	ND	ND	ND	ND	ND	ND	ND
Aylettes	10000	µg/L'	NU	INI	ND	טאו	IND	עוו	טאו	טאו	IND

= Concentration exceeds the specified Threshold Value

^{1.} Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{2.} Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{3.} Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{4.} Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

^{5.} Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Up

^{6.} Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.

^{7.} Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

a. The Threshold value given for these compounds is the threshold value for a mixture of isomers. For example, cis- and trans-1,3-dichloropropylene were not identified as having individual threshold values, however 1,3-dichloropropylene was identified as having a numerical value under the National Recommended Water Quality Criteria for Human Health for communition of water and organisms. As such, the value for total 1,3-dichloropropylene was used as the threshold value for the cis- and trans- isomers. The total of the two (2) isomers should not exceed this value even if each individual isomer is present at a concentration below the provided threshold value.

b. No threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes.

TABLE 1 - OW-17 SUMMARY OF GROUNDWATER MONITORING RESULTS CONSTITUENTS FOR DETECTION MONITORING **MONITORING WELL OW-17**

Concentration (expressed in same units as Threshold Value)

Parameter		shold lue	MAR '20
Antimony	0.006		0.0001
Arsenic	0.010	mg/L¹	0.0002
Barium	2	mg/L1	0.018
Beryllium	0.004	mg/L1	ND
Cadmium	0.005	mg/L1	ND
Chromium		mg/L¹	0.0006
Cobalt		mg/L⁵	0.0005
Copper		mg/L1	ND
Lead	0.015		0.0024
Mercury	0.002		ND
Nickel Selenium		mg/L² mg/L¹	0.001 ND
Silver		mg/L ² ³	ND ND
Thallium	0.002		ND
Tin		mg/L⁵	0.007
Vanadium		mg/L⁵	0.0006
Zinc		mg/L ^{2, 3}	0.008
1,1,1,2-Tetrachloroethane		μg/L²	ND
1,1,1-Trichloroethane		μg/L¹	ND
1,1,2,2-Tetrachloroethane		µg/L²	ND
1,1,2-Trichloroethane	5	μg/L¹	ND
1,1-Dichloroethane	5	μg/L ^b	ND
1,1-Dichloroethylene		µg/L¹	ND
1,2,3-Trichloropropane		μg/L ⁷	ND
1,2-Dibromo-3-chloropropane		µg/L¹	ND
1,2-Dibromoethane		µg/L¹	ND
1,2-Dichlorobenzene		μg/L¹	ND
1,2-Dichloroethane		μg/L¹	ND ND
1,2-Dichloropropane 1,4-Dichlorobenzene		µg/L¹	ND ND
4-Methyl-2-pentanone	75	μg/L¹ μg/L	ND ND
Acetone	610	μg/L⁵	ND
Acrylonitrate	0.039		ND
Benzene		µg/L¹	ND
Bromochloromethane		μg/L²	ND
Bromodichloromethane		μg/L¹	ND
Bromoform	80	μg/L¹	ND
Bromomethane		μg/L²	ND
Carbon disulfide	1000	µg/L⁵	ND
Carbon tetrachloride	5	µg/L¹	ND
Chlorobenzene		μg/L¹	ND
Chlorodibromomethane		µg/L¹	ND
Chloroethane		µg/L⁵	ND
Chloroform		µg/L¹	ND
Chloromethane		μg/L²	ND
cis-1,2-Dichloroethylene		μg/L¹ μg/L ^{6, a}	ND ND
cis-1,3-Dichloropropene Dibromomethane			ND ND
Ethylbenzene		μg/L⁵ μg/L¹	ND ND
Methyl butyl ketone(2-Hexanone)		μg/L⁵	ND
Methyl ethyl ketone(2-Butanone)	4000		ND
Methyl iodide	4000	μg/L	ND
Methyl tert-butyl ether (MTBE)	20 - 40		ND
Methylene chloride		μg/L¹	ND
Styrene		μg/L¹	ND
Tetrachloroethylene(PCE)	5	μg/L¹	ND
Toluene		μg/L¹	ND
Trans-1,2-Dichloroethylene		μg/L¹	ND
trans-1,3-Dichloropropene	0.27	µg/L ^{6, a}	ND
trans-1,4-Dichlo-2-butene		μg/L	ND
Trichloroethylene(TCE)		µg/L¹	ND
Trichlorofluoromethane	2000		ND
Vinyl acetate		µg/L⁵	ND
Vinyl chloride		μg/L¹	ND
Xylenes	10000		ND entration exceeds the

10000 μg/L¹ ND = Concentration exceeds the specified Threshold Value

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

- 1. Intershold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories

 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

 6. Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.

 7. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.
 - - a. The Threshold value given for these compounds is the threshold value for a mixture of isomers. For example, cis- and trans-1,3-dichloropropylene were not identified as having individual threshold values, however 1,3-dichloropropylene was identified as having a numerical value under the National Recommended Water Quality Criteria for Human Health for consumption of water and organisms. As such, the value for total 1,3-dichloropropylene was used as the threshold value for the cis- and trans- isomers. The total of the two (2) isomers should not exceed this value even if each individual isomer is present at a concentration below the provided threshold value.
 - b. No threshold value was identified for 1,1-dichloroethane, however due to the molecular similarities between this compounds and 1,2-dichloroethane, the threshold value for 1,2-dichloroethane is used for reference purposes

TABLE 2

Tolerance Intervals for March 2020 Monitoring Period

TABLE 2 SUMMARY OF GROUNDWATER MONITORING RESULTS - TOLERANCE INTERVAL COMPARISON MAR 2020 - SAMPLE ROUND

Concentration (units as specified for Threshold Value)

		OW-9)	OW-1	2	Average of 0	OW-9 & OW-12		Bac	kground W	ells		Coi	mpliance W	ells	
		Tolerance	Limit *	Tolerance	Limit *	Tolera	nce Limit *	<u>Threshold</u>		March, 2020	<u>)</u>		!	March, 2020	<u>)</u>	
	<u>Parameter</u>	TL=AVG+	-K*S	TL=AVG+	-K*S	<u>TL=/</u>	NG+K*S	<u>Value</u>	OW-9	OW-12	OW-17	OW-7	OW-13	OW-14	OW-15	OW-16
METALS	Antimony	0.0290	mg/L	0.0250	mg/L	0.0270	mg/L	0.006 mg/L ¹	ND	ND	0.0001	ND	0.0001	0.0004	0.0001	ND
	Arsenic	0.0030	mg/L	0.0100	mg/L	0.0065	mg/L	0.010 mg/L ¹	0.0002	ND	0.0002	ND	0.0065	0.0015	0.0066	ND
	Barium	0.0522	mg/L	0.0413	mg/L	0.0468	mg/L	2 mg/L ¹	0.023	0.024	0.018	0.033	0.139	0.19	0.191	0.009
	Beryllium	0.0005	mg/L	0.0005	mg/L	0.0005	mg/L	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND
	Cadmium	0.3650	mg/L	0.0010	mg/L	0.1830	mg/L	0.005 mg/L ¹	0.0001	0.0005	ND	0.0005	0.0005	ND	ND	0.0002
	Chromium	0.0332	mg/L	0.0049	mg/L	0.0190	mg/L	0.1 mg/L ¹	0.0036	ND	0.0006	0.0001	0.0005	0.0005	0.0009	ND
	Cobalt	0.0036	mg/L	0.0020	mg/L	0.0028	mg/L	0.73 mg/L⁵	0.0008	0.0011	0.0005	0.0072	0.0099	0.0064	0.0035	0.0007
	Copper	0.0629	mg/L	0.0090	mg/L	0.0360	mg/L	1.3 mg/L ¹	0.001	ND	ND	ND	0.005	ND	ND	ND
	Lead	0.1898	mg/L	0.0005	mg/L	0.0951	mg/L	0.015 mg/L ¹	0.003	0.0004	0.0024	0.0003	0.0016	0.0003	0.0003	ND
	Mercury	0.0001	mg/L	0.0001	mg/L	0.0001	mg/L	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND
	Nickel	0.0256	mg/L	0.0349	mg/L	0.0303	mg/L	0.1 mg/L ²	0.002	0.011	0.001	0.009	0.009	0.012	0.012	0.002
	Selenium	0.0100	mg/L	0.0025	mg/L	0.0063	mg/L	0.05 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND
	Silver	0.0005	mg/L	0.0030	mg/L	0.0018	mg/L	0.1 mg/L ^{2, 3}	ND	ND	ND	ND	ND	ND	ND	ND
	Thallium	0.0005	mg/L	0.0001	mg/L	0.0003	mg/L	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND
	Tin	0.0370	mg/L	0.0025	mg/L	0.0198	mg/L	22 mg/L⁵	0.037	ND	0.007	ND	0.009	0.055	0.0150	ND
	Vanadium	0.0085	mg/L	0.0040	mg/L	0.0062	mg/L	0.26 mg/L⁵	0.0011	ND	0.0006	ND	ND	0.0005	0.0006	ND
	Zinc	11.5758	mg/L	0.0335	mg/L	5.8047	mg/L	2 mg/L ^{2, 3}	0.01	0.002	0.008	0.004	0.017	0.003	0.0030	0.003

- = Concentration exceeds the Site-specific background Tolerance Limit
- = Concentration exceeds the applicable Threshold Value
- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Threshold value given is derived from the EPA's National Recommended Water Quality Criteria for Human Health for the consumption of water and organisms, amended 2015.
- 7. Threshold value given is derived from the EPA's Unregulated Contaminant Monitoring Rule's minimum reporting levels.

No threshold value has been provided for parameters not identified in the sources listed above

"____" = One half of the laboratory detection limit "DL"

NT = Not Tested due to dry conditions at well.

TABLE 3 Historical Analytical Data, Surface Water Sampling

TABLE 3 SUMMARY OF SURFACE WATER MONITORING RESULTS SURFACE WATER SW-1 MARCH 2020 MONITORING ROUND

Concentration (expressed in same units as Human Health Threshold)

Bt	<u>Human</u>	_	Aquatic Life	Units	M 100	D 140	J 140	M 140	D 140	0 140	l 140	M140	D 147	0 147	l 147	M 147
<u>Parameter</u>	Health		shold		Mar '20	Dec '19	Jun '19	Mar '19	Dec '18	Sep '18	Jun '18	Mar '18	Dec '17	Sep '17	Jun '17	Mar '17
	Threshold	(Acute)	(Chronic)	1												
Antimony	0.0056	0.4500	0.0100	mg/L ¹	0.0001	ND	ND	ND	0.002	ND	ND	ND	ND	0.006	0.002	0.006
Arsenic	0.00018	0.3400	0.1500	mg/L¹	0.0002	0.0002	0.0009	0.0002	ND	ND	0.01	0.004	0.004	ND	0.003	ND
Barium	2			mg/L ¹	0.017	0.019	0.068	0.023	0.031	0.036	0.04	0.022	0.022	0.473	0.025	0.016
Beryllium	0.004	0.0075	0.00017	mg/L ¹	ND											
Cadmium	0.005	0.0016	0.00021	mg/L ¹	ND	0.08	0.001	ND								
Calcium				mg/L	23.5	35.4	62.2	NT								
Chromium	0.1	0.0160	0.0110	mg/L ¹	0.0004	0.0004	0.0005	0.0002	ND	ND	ND	ND	ND	0.004	0.001	ND
Cobalt	0.73			mg/L ⁵	0.0002	0.0002	0.0014	0.0002	ND	ND	ND	ND	ND	0.006	0.004	ND
Copper	1.3	0.0108	0.0073	mg/L ¹	0.001	ND										
Iron	0.3		1.0000	mg/L ³	0.304	0.647	10.7	0.521	NT							
Lead	0.015	0.0820	0.0032	mg/L ¹	0.0005	0.0003	0.0003	0.0003	ND	ND	ND	ND	ND	0.019	0.002	ND
Magnesium				mg/L	4.98	4.93	11.8	NT								
Mercury	0.00014	0.0014	0.00077	mg/L ¹	ND											
Nickel	0.61	0.3848	0.0427	mg/L ²	0.001	0.003	0.003	0.001	0.002	0.003	0.001	0.003	0.003	0.014	0.005	0.003
Selenium	0.05	0.0200	0.0031	mg/L ⁷	ND											
Silver	0.1	0.0023		mg/L ²	ND											
Thallium	0.00024	0.0460	0.0010	mg/L ¹	ND											
Tin	22			mg/L ⁵	ND											
Vanadium	0.26			mg/L ⁵	ND	ND	ND	ND	0.001	0.001	ND	ND	ND	0.117	0.006	ND
Zinc	2	0.0963	0.0971	mg/L ³	0.003	0.005	0.006	0.002	0.012	0.005	0.015	0.009	0.009	0.097	0.02	0.006
Hardness (CaCO3)			< 20	mg/L	79.3	109	204	112	182	128	166	106	71.8	300	35.2	70.2
Ammonia	30	18.4	5.20	mg/L ²	ND	0.2	0.1	0.2	NT							
TKN				mg/L	0.4	1.1	0.4	0.4	NT							
Total Phosphorus	0.025			mg/L ⁶	ND	ND	ND	0.05	NT							
Total Nitrogen	10	1		mg/L°	0.86	1.15	0.4	1.5	NT							

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Ambient water quality standard.
- 7. Ambient water quality standard for selenium was selected from the EPA's 2016 Final Guidance for Aquatic Life Ambient Water Quality Criterion for Selenium. This guidance provides four chronic values that are dependent on site conditions, and the Lotic Water Chronic Criterion has been selected as it appears to be most applicable to site conditions.

###	Concentration exceeds the applicable Human Health Criteria
###	Concentration exceeds the applicable Freshwater Acute Exposure Criteria
###	Concentration exceeds the applicable Freshwater Chronic Exposure Criteria
###	Concentration exceeds both the Human Health Criteria and the Freshwater Acute Exposure Criteria
###	Concentration exceeds both the Human Health Criteria and the Freshwater Chronic Exposure Criteria

No threshold value has been provided for parameters not identified in the sources listed above

Aquatic Life criteria provided above from RIDEM Water Quality Regulations or the EPA's National Recommended Water Quality Criteria, Human Health Criteria for Consumption of water and organisms. "--" represents parameters for which no aquatic life criteria has been established.

"O.R." - Threshold value is temperature and/or pH dependent. Temperature and/ or pH was outside of the range for which a threshold value is established.

TABLE 3 (CONT.) SUMMARY OF SURFACE WATER MONITORING RESULTS SURFACE WATER SW-2

MARCH 2020 MONITORING ROUND

Concentration (expressed in same units as Human Health Threshold)

	Human	Freshwater	Aquatic Life	1114												
<u>Parameter</u>	Health	Thres	shold	<u>Units</u>	Mar '20	Dec '19	Jun '19	Mar '19	Dec '18	Sep '18	Jun '18	Mar '18	Dec '17	Sep '17	Jun '17	Mar '17
	Threshold	(Acute)	(Chronic)													
Antimony	0.0056	0.4500	0.0100	mg/L ¹	ND	ND	ND	ND	0.002	0.003	0.001	ND	0.003	ND	0.002	ND
Arsenic	0.00018	0.3400	0.1500	mg/L ¹	0.0002	0.0002	0.0006	0.0003	ND	ND	0.005	ND	ND	ND	ND	ND
Barium	2			mg/L ¹	0.007	0.006	0.011	0.006	0.006	0.017	0.011	0.009	0.008	0.013	0.01	0.008
Beryllium	0.004	0.0075	0.00017	mg/L ¹	ND											
Cadmium	0.005	0.0004	0.00007	mg/L ¹	ND											
Calcium				mg/L	3.98	3.34	7.51	NT								
Chromium	0.1	0.0160	0.0110	mg/L ¹	0.0006	0.0006	0.0007	0.0005	ND	ND	ND	ND	ND	ND	0.001	ND
Cobalt	0.73			mg/L ⁵	0.0012	0.0005	0.0025	0.0002	ND	0.002	ND	ND	ND	0.001	0.002	ND
Copper	1.3	0.0026	0.0020	mg/L ¹	0.001	ND										
Iron	0.3		1.0000	mg/L ³	0.911	0.661	3.05	0.516	NT							
Lead	0.015	0.0820	0.0032	mg/L ¹	0.0007	0.0006	0.0009	0.0003	ND	ND	ND	ND	ND	ND	0.002	0.002
Magnesium				mg/L	1.9	1.42	2.75	NT								
Mercury	0.00014	0.0014	0.00077	mg/L ¹	ND											
Nickel	0.61	0.1087	0.0121	mg/L ²	0.002	0.001	0.002	0.001	0.002	0.002	0.003	0.002	0.001	0.002	0.004	0.003
Selenium	0.05	0.0200	0.0031	mg/L ⁷	ND											
Silver	0.1	0.0002		mg/L ²	ND	0.002	ND	ND								
Thallium	0.00024	0.0460	0.0010	mg/L ¹	ND											
Tin	22			mg/L ⁵	ND											
Vanadium	0.26			mg/L ⁵	0.0007	0.0007	0.0013	0.0006	ND	0.001	0.002	ND	ND	0.002	0.002	0.002
Zinc	2	0.0271	0.0274	mg/L ³	0.003	0.005	0.006	0.003	0.012	0.006	0.019	0.014	ND	0.006	0.01	0.011
Hardness (CaCO3)			< 20	mg/L	17.8	14.2	30.1	20.6	19.5	34.9	17.3	16.2	27.9	20	16.5	18.4
Ammonia	30	18.4	5.20	mg/L ²	0.1	ND	0.4	ND	NT							
TKN				mg/L	0.4	1.1	1	0.5	NT							
Total Phosphorus	0.025			mg/L ⁶	ND	ND	ND	ND	NT							
Total Nitrogen	10			mg/L ⁶	0.4	1.63	1	0.5	NT							

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Ambient water quality standard.
- 7. Ambient water quality standard for selenium was selected from the EPA's 2016 Final Guidance for Aquatic Life Ambient Water Quality Criterion for Selenium. This guidance provides four chronic values that are dependent on site conditions, and the Lotic Water Chronic Criterion has been selected as it appears to be most applicable to site conditions.

###	Concentration exceeds the applicable Human Health Criteria
###	Concentration exceeds the applicable Freshwater Acute Exposure Criteria
###	Concentration exceeds the applicable Freshwater Chronic Exposure Criteria
###	Concentration exceeds both the Human Health Criteria and the Freshwater Acute Exposure Criteria
###	Concentration exceeds both the Human Health Criteria and the Freshwater Chronic Exposure Criteria

No threshold value has been provided for parameters not identified in the sources listed above

Aquatic Life criteria provided above from RIDEM Water Quality Regulations or the EPA's National Recommended Water Quality Criteria, Human Health Criteria for Consumption of water and organisms. "--" represents parameters for which no aquatic life criteria has been established.

"O.R." - Threshold value is temperature and/or pH dependent. Temperature and/ or pH was outside of the range for which a threshold value is established.

TABLE 3 (CONT.) SUMMARY OF SURFACE WATER MONITORING RESULTS SURFACE WATER SW-3

MARCH 2020 MONITORING ROUND

Concentration (expressed in same units as Human Health Threshold)

	<u>Human</u>	Freshwater		Units												
<u>Parameter</u>	<u>Health</u>	Thres			Mar '20	Dec '19	Jun '19	Mar '19	Dec '18	Sep '18	Jun '18	Mar '18	Dec '17	Sep '17	Jun '17	Mar '17
	Threshold	(Acute)	(Chronic)													
Antimony	0.0056	0.4500	0.0100	mg/L ¹	0.0001	ND	ND	ND	0.002	0.003	0.005	ND	0.011	NT	0.02	ND
Arsenic	0.00018	0.3400	0.1500	mg/L ¹	0.0002	0.0002	0.0006	0.0002	ND	ND	0.02	ND	ND	NT	ND	ND
Barium	2			mg/L ¹	0.019	0.007	0.014	0.007	0.01	0.018	1.66	1.33	0.087	NT	0.211	0.015
Beryllium	0.004	0.0075	0.00017	mg/L ¹	ND	NT	ND	ND								
Cadmium	0.005	0.0016	0.00021	mg/L ¹	ND	ND	ND	ND	ND	ND	0.008	0.051	ND	NT	0.009	ND
Calcium				mg/L	23.3	5.54	10.8	NT								
Chromium	0.1	0.0160	0.0110	mg/L ¹	0.0007	0.0005	0.0007	0.0003	ND	ND	ND	0.249	0.006	NT	0.017	ND
Cobalt	0.73			mg/L ⁵	0.0002	0.0004	0.0023	0.0002	ND	0.004	0.003	0.132	0.006	NT	0.019	ND
Copper	1.3	0.0108	0.0073	mg/L ¹	0.001	0.002	ND	ND	ND	ND	ND	0.24	ND	NT	ND	ND
Iron	0.3		1.0000	mg/L ³	1.18	0.788	4.13	0.449	NT							
Lead	0.015	0.0820	0.0032	mg/L ¹	0.0018	0.0003	0.0005	0.0009	ND	ND	ND	0.715	0.011	NT	0.029	ND
Magnesium				mg/L	5.06	2.18	3.33	NT								
Mercury	0.00014	0.0014	0.00077	mg/L ¹	ND	0.0003	ND	ND	ND	ND	ND	0.0013	ND	NT	ND	ND
Nickel	0.61	0.3836	0.0426	mg/L ²	0.001	0.001	0.002	0.002	0.001	0.006	0.018	0.433	0.01	NT	0.131	0.006
Selenium	0.05	0.0200	0.0031	mg/L ⁷	ND	NT	ND	ND								
Silver	0.1	0.0023		mg/L ²	ND	NT	ND	ND								
Thallium	0.00024	0.0460	0.0010	mg/L ¹	ND	NT	ND	ND								
Tin	22			mg/L ⁵	0.025	ND	NT	ND	ND							
Vanadium	0.26			mg/L ⁵	0.0006	0.0005	0.0012	ND	ND	0.003	0.004	0.418	0.026	NT	0.028	ND
Zinc	2	0.0960	0.0968	mg/L ³	0.004	0.007	0.006	0.004	0.007	0.011	0.505	2.52	0.058	NT	0.11	0.016
Hardness (CaCO3)			< 20	mg/L	79	22.8	40.7	23.7	50.7	47.2	79.5	441	65.1	NT	294	47.1
Ammonia	30	18.4	5.20	mg/L ²	ND	ND	0.2	ND	NT							
TKN				mg/L	0.8	0.4	0.5	0.3	NT							
Total Phosphorus	0.025			mg/L ⁶	ND	ND	0.22	ND	NT							
Total Nitrogen	10			mg/L ⁶	1.27	0.53	0.5	0.3	NT							

- 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 2. Threshold value given is the lifetime health advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 3. Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 4. Threshold value given is the Drinking Water Advisory as provided in the USEPA 2018 Edition of the Drinking Water Standards and Health Advisories
- 5. Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update
- 6. Ambient water quality standard.
- 7. Ambient water quality standard for selenium was selected from the EPA's 2016 Final Guidance for Aquatic Life Ambient Water Quality Criterion for Selenium. This guidance provides four chronic values that are dependent on site conditions, and the Lotic Water Chronic Criterion has been selected as it appears to be most applicable to site conditions.

###	Concentration exceeds the applicable Human Health Criteria
###	Concentration exceeds the applicable Freshwater Acute Exposure Criteria
###	Concentration exceeds the applicable Freshwater Chronic Exposure Criteria
###	Concentration exceeds both the Human Health Criteria and the Freshwater Acute Exposure Criteria
###	Concentration exceeds both the Human Health Criteria and the Freshwater Chronic Exposure Criteria

No threshold value has been provided for parameters not identified in the sources listed above

Aquatic Life criteria provided above from RIDEM Water Quality Regulations or the EPA's National Recommended Water Quality Criteria, Human Health Criteria for Consumption of water and organisms. "--" represents parameters for which no aquatic life criteria has been established.

"O.R." - Threshold value is temperature and/or pH dependent. Temperature and/or pH was outside of the range for which a threshold value is established.

ATTACHMENT 1

Laboratory Analytical Report, Observation Well Sampling

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 0C27017 Client Project: 94139 - Tiverton Landfill

Report Date: 03-April-2020

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com NETLAB Case Number: 0C27017

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 03/27/20. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 0C27017. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
0C27017-01	OW-9	Water	02/26/2020	02/27/2020
UC2/U1/-U1	OW-9	water	03/26/2020	03/27/2020
0C27017-02	OW-12	Water	03/26/2020	03/27/2020
0C27017-03	OW-14	Water	03/26/2020	03/27/2020
0C27017-04	OW-15	Water	03/26/2020	03/27/2020
0C27017-05	OW-17	Water	03/26/2020	03/27/2020
0C27017-06	OW-7	Water	03/26/2020	03/27/2020
0C27017-07	OW-16	Water	03/26/2020	03/27/2020
0C27017-08	OW-13	Water	03/26/2020	03/27/2020

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

OW-12 (Lab Number: 0C27017-02)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Appendix A Volatile Organics	EPA 8260C
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Zinc	EPA 200.8

OW-13 (Lab Number: 0C27017-08)

<u>Method</u>
EPA 200.8
EPA 8260C
EPA 200.8
EPA 7470A
EPA 200.8

OW-14 (Lab Number: 0C27017-03)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Appendix A Volatile Organics	EPA 8260C
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8

Request for Analysis (continued)

OW-14 (Lab Number: 0C27017-03) (continued)

<u>Analysis</u>	<u>Method</u>
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Zinc	EPA 200.8

OW-15 (Lab Number: 0C27017-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Appendix A Volatile Organics	EPA 8260C
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Zinc	EPA 200.8

OW-16 (Lab Number: 0C27017-07)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Appendix A Volatile Organics	EPA 8260C
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Zinc	EPA 200.8

Request for Analysis (continued)

OW-17 (Lab Number: 0C27017-05)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Appendix A Volatile Organics	EPA 8260C
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Zinc	EPA 200.8

OW-7 (Lab Number: 0C27017-06)

•	
<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Appendix A Volatile Organics	EPA 8260C
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Zinc	EPA 200.8

Request for Analysis (continued)

OW-9 (Lab Number: 0C27017-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 200.8
Appendix A Volatile Organics	EPA 8260C
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Lead	EPA 200.8
Mercury	EPA 7470A
Nickel	EPA 200.8
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Vanadium	EPA 200.8
Zinc	EPA 200.8

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 0C27017

Case Narrative

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria. Those compounds whose names include "TIC" were qualitatively screened via reconstructed ion chromatography and no detections were identified to the listed PQLs.

Sample: OW-9

Lab Number: 0C27017-01 (Water)

Reporting						
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND	0.0001	mg/L	03/30/20	03/30/20	
Arsenic	0.0002	0.0001	mg/L	03/30/20	03/30/20	
Barium	0.023	0.001	mg/l	03/30/20	03/30/20	
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20	
Cadmium	0.0001	0.0001	mg/L	03/30/20	03/30/20	
Chromium	0.0036	0.0001	mg/L	03/30/20	03/30/20	
Cobalt	0.0008	0.0001	mg/L	03/30/20	03/30/20	
Copper	0.001	0.001	mg/l	03/30/20	03/30/20	
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20	
Nickel	0.002	0.001	mg/l	03/30/20	03/30/20	
Selenium	ND	0.005	mg/L	03/30/20	03/30/20	
Silver	ND	0.0001	mg/L	03/30/20	03/30/20	
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20	
Tin	0.037	0.005	mg/l	03/30/20	03/30/20	
Vanadium	0.0011	0.0005	mg/L	03/30/20	03/30/20	
Zinc	0.010	0.001	mg/l	03/30/20	03/30/20	
Lead	0.0030	0.0001	mg/L	03/30/20	03/30/20	

NETLAB Case Number: 0C27017

Results: Total Metals

Sample: OW-12

Lab Number: 0C27017-02 (Water)

Reporting						
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND	0.0001	mg/L	03/30/20	03/30/20	
Arsenic	ND	0.0001	mg/L	03/30/20	03/30/20	
Barium	0.024	0.001	mg/l	03/30/20	03/30/20	
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20	
Cadmium	0.0005	0.0001	mg/L	03/30/20	03/30/20	
Chromium	ND	0.0001	mg/L	03/30/20	03/30/20	
Cobalt	0.0011	0.0001	mg/L	03/30/20	03/30/20	
Copper	ND	0.001	mg/l	03/30/20	03/30/20	
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20	
Nickel	0.011	0.001	mg/l	03/30/20	03/30/20	
Selenium	ND	0.005	mg/L	03/30/20	03/30/20	
Silver	ND	0.0001	mg/L	03/30/20	03/30/20	
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20	
Tin	ND	0.005	mg/l	03/30/20	03/30/20	
Vanadium	ND	0.0005	mg/L	03/30/20	03/30/20	
Zinc	0.002	0.001	mg/l	03/30/20	03/30/20	
Lead	0.0004	0.0001	mg/L	03/30/20	03/30/20	

Sample: OW-14

Lab Number: 0C27017-03 (Water)

Reporting						
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed	
Antimony	0.0004	0.0001	mg/L	03/30/20	03/30/20	
Arsenic	0.0015	0.0001	mg/L	03/30/20	03/30/20	
Barium	0.190	0.001	mg/l	03/30/20	03/30/20	
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20	
Cadmium	ND	0.0001	mg/L	03/30/20	03/30/20	
Chromium	0.0005	0.0001	mg/L	03/30/20	03/30/20	
Cobalt	0.0064	0.0001	mg/L	03/30/20	03/30/20	
Copper	ND	0.001	mg/l	03/30/20	03/30/20	
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20	
Nickel	0.012	0.001	mg/l	03/30/20	03/30/20	
Selenium	ND	0.005	mg/L	03/30/20	03/30/20	
Silver	ND	0.0001	mg/L	03/30/20	03/30/20	
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20	
Tin	0.055	0.005	mg/l	03/30/20	03/30/20	
Vanadium	0.0005	0.0005	mg/L	03/30/20	03/30/20	
Zinc	0.003	0.001	mg/l	03/30/20	03/30/20	
Lead	0.0003	0.0001	mg/L	03/30/20	03/30/20	

Sample: OW-15

Lab Number: 0C27017-04 (Water)

	Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	0.0001		0.0001	mg/L	03/30/20	03/30/20	
Arsenic	0.0066		0.0001	mg/L	03/30/20	03/30/20	
Barium	0.191		0.001	mg/l	03/30/20	03/30/20	
Beryllium	ND		0.0001	mg/L	03/30/20	03/30/20	
Cadmium	ND		0.0001	mg/L	03/30/20	03/30/20	
Chromium	0.0009		0.0001	mg/L	03/30/20	03/30/20	
Cobalt	0.0035		0.0001	mg/L	03/30/20	03/30/20	
Copper	ND		0.001	mg/l	03/30/20	03/30/20	
Mercury	ND		0.0002	mg/L	03/30/20	03/30/20	
Nickel	0.012		0.001	mg/l	03/30/20	03/30/20	
Selenium	ND		0.005	mg/L	03/30/20	03/30/20	
Silver	ND		0.0001	mg/L	03/30/20	03/30/20	
Thallium	ND		0.0001	mg/L	03/30/20	03/30/20	
Tin	0.015		0.005	mg/l	03/30/20	03/30/20	
Vanadium	0.0006		0.0005	mg/L	03/30/20	03/30/20	
Zinc	0.003		0.001	mg/l	03/30/20	03/30/20	
Lead	0.0003		0.0001	mg/L	03/30/20	03/30/20	

Sample: OW-17

Lab Number: 0C27017-05 (Water)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	0.0001		0.0001	mg/L	03/30/20	03/30/20
Arsenic	0.0002		0.0001	mg/L	03/30/20	03/30/20
Barium	0.018		0.001	mg/l	03/30/20	03/30/20
Beryllium	ND		0.0001	mg/L	03/30/20	03/30/20
Cadmium	ND		0.0001	mg/L	03/30/20	03/30/20
Chromium	0.0006		0.0001	mg/L	03/30/20	03/30/20
Cobalt	0.0005		0.0001	mg/L	03/30/20	03/30/20
Copper	ND		0.001	mg/l	03/30/20	03/30/20
Mercury	ND		0.0002	mg/L	03/30/20	03/30/20
Nickel	0.001		0.001	mg/l	03/30/20	03/30/20
Selenium	ND		0.005	mg/L	03/30/20	03/30/20
Silver	ND		0.0001	mg/L	03/30/20	03/30/20
Thallium	ND		0.0001	mg/L	03/30/20	03/30/20
Tin	0.007		0.005	mg/l	03/30/20	03/30/20
Vanadium	0.0006		0.0005	mg/L	03/30/20	03/30/20
Zinc	0.008		0.001	mg/l	03/30/20	03/30/20
Lead	0.0024		0.0001	mg/L	03/30/20	03/30/20

Results: Total Metals

Sample: OW-7

Lab Number: 0C27017-06 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Antimony	ND	0.0001	mg/L	03/30/20	03/30/20
Arsenic	ND	0.0001	mg/L	03/30/20	03/30/20
Barium	0.033	0.001	mg/l	03/30/20	03/30/20
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20
Cadmium	0.0005	0.0001	mg/L	03/30/20	03/30/20
Chromium	0.0001	0.0001	mg/L	03/30/20	03/30/20
Cobalt	0.0072	0.0001	mg/L	03/30/20	03/30/20
Copper	ND	0.001	mg/l	03/30/20	03/30/20
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20
Nickel	0.009	0.001	mg/l	03/30/20	03/30/20
Selenium	ND	0.005	mg/L	03/30/20	03/30/20
Silver	ND	0.0001	mg/L	03/30/20	03/30/20
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20
Tin	ND	0.005	mg/l	03/30/20	03/30/20
Vanadium	ND	0.0005	mg/L	03/30/20	03/30/20
Zinc	0.004	0.001	mg/l	03/30/20	03/30/20
Lead	0.0003	0.0001	mg/L	03/30/20	03/30/20
	0.0005	0.0001		33,30,20	

Results: Total Metals

Sample: OW-16

Lab Number: 0C27017-07 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Antimony	ND	0.0001	mg/L	03/30/20	03/30/20
Arsenic	ND	0.0001	mg/L	03/30/20	03/30/20
Barium	0.009	0.001	mg/l	03/30/20	03/30/20
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20
Cadmium	0.0002	0.0001	mg/L	03/30/20	03/30/20
Chromium	ND	0.0001	mg/L	03/30/20	03/30/20
Cobalt	0.0007	0.0001	mg/L	03/30/20	03/30/20
Copper	ND	0.001	mg/l	03/30/20	03/30/20
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20
Nickel	0.002	0.001	mg/l	03/30/20	03/30/20
Selenium	ND	0.005	mg/L	03/30/20	03/30/20
Silver	ND	0.0001	mg/L	03/30/20	03/30/20
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20
Tin	ND	0.005	mg/l	03/30/20	03/30/20
Vanadium	ND	0.0005	mg/L	03/30/20	03/30/20
Zinc	0.003	0.001	mg/l	03/30/20	03/30/20
Lead	ND	0.0001	mg/L	03/30/20	03/30/20

Results: Total Metals

Sample: OW-13

Lab Number: 0C27017-08 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Antimony	0.0001	0.0001	mg/L	03/30/20	03/30/20
Arsenic	0.0065	0.0001	mg/L	03/30/20	03/30/20
Barium	0.139	0.001	mg/l	03/30/20	03/30/20
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20
Cadmium	0.0005	0.0001	mg/L	03/30/20	03/30/20
Chromium	0.0005	0.0001	mg/L	03/30/20	03/30/20
Cobalt	0.0099	0.0001	mg/L	03/30/20	03/30/20
Copper	0.005	0.001	mg/l	03/30/20	03/30/20
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20
Nickel	0.009	0.001	mg/l	03/30/20	03/30/20
Selenium	ND	0.005	mg/L	03/30/20	03/30/20
Silver	ND	0.0001	mg/L	03/30/20	03/30/20
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20
Tin	0.009	0.005	mg/l	03/30/20	03/30/20
Vanadium	ND	0.0005	mg/L	03/30/20	03/30/20
Zinc	0.017	0.001	mg/l	03/30/20	03/30/20
Lead	0.0016	0.0001	mg/L	03/30/20	03/30/20

Sample: OW-9

Lab Number: 0C27017-01 (Water)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
1,1,1,2-Tetrachloroethane	ND		1	ug/l	04/01/20	04/01/20
1,1,1-Trichloroethane	ND		1	ug/l	04/01/20	04/01/20
1,1,2,2-Tetrachloroethane	ND		1	ug/l	04/01/20	04/01/20
1,1,2-Trichloroethane	ND		1	ug/l	04/01/20	04/01/20
1,1-Dichloroethane	ND		1	ug/l	04/01/20	04/01/20
1,1-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20
1,1-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20
1,2,3-Trichloropropane	ND		1	ug/l	04/01/20	04/01/20
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l	04/01/20	04/01/20
1,2-Dibromoethane (EDB)	ND		1	ug/l	04/01/20	04/01/20
1,2-Dichloroethane	ND		1	ug/l	04/01/20	04/01/20
1,2-Dichloropropane	ND		1	ug/l	04/01/20	04/01/20
1,3-Dichloropropane	ND		1	ug/l	04/01/20	04/01/20
2,2-Dichloropropane	ND		1	ug/l	04/01/20	04/01/20
2,2-Dictiloroproparie 2-Hexanone	ND ND		5	ug/i ug/l	04/01/20	04/01/20
r-nexanone I-Methyl-2-pentanone			5			
, ,	ND ND		5	ug/l	04/01/20	04/01/20 04/01/20
Acetone	ND ND			ug/l	04/01/20	
Acetonitrile Acrolein	ND ND		5	ug/l	04/01/20	04/01/20
	ND		5	ug/l	04/01/20	04/01/20
crylonitrile	ND		5	ug/l	04/01/20	04/01/20
llyl chloride (TIC)	ND		5	ug/l 	04/01/20	04/01/20
denzene	ND		1	ug/l	04/01/20	04/01/20
romochloromethane	ND		1	ug/l	04/01/20	04/01/20
romodichloromethane	ND		1	ug/l	04/01/20	04/01/20
romoform	ND		1	ug/l	04/01/20	04/01/20
Carbon Disulfide	ND		1	ug/l	04/01/20	04/01/20
arbon Tetrachloride	ND		1	ug/l	04/01/20	04/01/20
Chlorobenzene	ND		1	ug/l	04/01/20	04/01/20
Chloroethane	ND		1	ug/l	04/01/20	04/01/20
Chloroform	ND		1	ug/l	04/01/20	04/01/20
Chloroprene (TIC)	ND		1	ug/l	04/01/20	04/01/20
is-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20
is-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20
bibromochloromethane	ND		1	ug/l	04/01/20	04/01/20
ichlorodifluoromethane	ND		1	ug/l	04/01/20	04/01/20
thyl Methacrylate (TIC)	ND		5	ug/l	04/01/20	04/01/20
thylbenzene	ND		1	ug/l	04/01/20	04/01/20
sobutyl Alcohol (TIC)	ND		20	ug/l	04/01/20	04/01/20
sodrin (TIC)	ND		5	ug/l	04/01/20	04/01/20
,3-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
ethacrylonitrile (TIC)	ND		10	ug/l	04/01/20	04/01/20
romomethane	ND		1	ug/l	04/01/20	04/01/20
hloromethane	ND		1	ug/l	04/01/20	04/01/20
2-Butanone	ND		5	ug/l	04/01/20	04/01/20
1ethyl iodide (TIC)	ND		5	ug/l	04/01/20	04/01/20
Methylmethacrylate	ND		10	ug/l	04/01/20	04/01/20
Dibromomethane	ND		1	ug/l	04/01/20	04/01/20
Methylene Chloride	ND		1	ug/l	04/01/20	04/0: Pa

Sample: OW-9 (Continued) Lab Number: 0C27017-01 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
1,2-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20	
1,4-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20	
Propionitrile (TIC)	ND		20	ug/l	04/01/20	04/01/20	
Styrene	ND		1	ug/l	04/01/20	04/01/20	
Tetrachloroethene	ND		1	ug/l	04/01/20	04/01/20	
Methyl t-butyl ether (MTBE)	ND		1	ug/l	04/01/20	04/01/20	
Toluene	ND		1	ug/l	04/01/20	04/01/20	
trans-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20	
trans-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20	
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/01/20	04/01/20	
Trichloroethene	ND		1	ug/l	04/01/20	04/01/20	
Trichlorofluoromethane	ND		1	ug/l	04/01/20	04/01/20	
Vinyl acetate (TIC)	ND		5	ug/l	04/01/20	04/01/20	
Vinyl Chloride	ND		1	ug/l	04/01/20	04/01/20	
Total xylenes	ND		2	ug/l	04/01/20	04/01/20	
Surrogate(s)	Recovery%		Limi	ts			
Toluene-d8	97.0%		<i>70-1</i> .	30	04/01/20	04/01/20	
1,2-Dichloroethane-d4	102%		70-13	30	04/01/20	04/01/20	
4-Bromofluorobenzene	94.7%		70-13	30	04/01/20	04/01/20	

Sample: OW-12

Lab Number: 0C27017-02 (Water)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
1,1,1,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1,1-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1,2,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1,2-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20		
1,1-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20		
1,2,3-Trichloropropane	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dibromoethane (EDB)	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20		
1,3-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20		
2,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20		
2-Hexanone	ND	5	ug/l	04/01/20	04/01/20		
1-Methyl-2-pentanone	ND	5	ug/l	04/01/20	04/01/20		
acetone	ND	5	ug/l	04/01/20	04/01/20		
Acetonitrile	ND	5	ug/l	04/01/20	04/01/20		
Acrolein	ND	5	ug/l	04/01/20	04/01/20		
Acrylonitrile	ND	5	ug/l	04/01/20	04/01/20		
Allyl chloride (TIC)	ND	5	ug/l	04/01/20	04/01/20		
Benzene	ND	1	ug/l	04/01/20	04/01/20		
romochloromethane	ND	1	ug/l	04/01/20	04/01/20		
romodichloromethane	ND	1	ug/l	04/01/20	04/01/20		
romoform	ND	1	ug/l	04/01/20	04/01/20		
arbon Disulfide	ND	1	ug/l	04/01/20	04/01/20		
Carbon Tetrachloride	ND	1	ug/l	04/01/20	04/01/20		
Chlorobenzene	ND	1	ug/l	04/01/20	04/01/20		
Chloroethane	ND	1	ug/l	04/01/20	04/01/20		
Chloroform	ND	1	ug/l	04/01/20	04/01/20		
Chloroprene (TIC)	ND	1	ug/l	04/01/20	04/01/20		
cis-1,2-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20		
cis-1,3-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20		
Dibromochloromethane	ND ND	1	ug/l	04/01/20	04/01/20		
Dichlorodifluoromethane	ND	1	ug/l	04/01/20	04/01/20		
thyl Methacrylate (TIC)	ND ND	5	ug/l	04/01/20	04/01/20		
		1					
thylbenzene sobutyl Alcohol (TIC)	ND ND	20	ug/l	04/01/20 04/01/20	04/01/20 04/01/20		
		5	ug/l	04/01/20	04/01/20		
Sodrin (TIC)	ND ND		ug/l	04/01/20	04/01/20		
3-Dichlorobenzene	ND ND	1 10	ug/l	04/01/20 04/01/20	04/01/20 04/01/20		
lethacrylonitrile (TIC)			ug/l				
romomethane	ND	1	ug/l	04/01/20	04/01/20		
Chloromethane	ND	1	ug/l	04/01/20	04/01/20		
2-Butanone	ND	5	ug/l	04/01/20	04/01/20		
Methyl iodide (TIC)	ND	5	ug/l	04/01/20	04/01/20		
Methylmethacrylate	ND	10	ug/l	04/01/20	04/01/20		
Dibromomethane	ND	1	ug/l	04/01/20	04/01/20		
lethylene Chloride	ND	1	ug/l	04/01/20	04/0 Pa		

Sample: OW-12 (Continued) Lab Number: 0C27017-02 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
1,2-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20	
1,4-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20	
Propionitrile (TIC)	ND		20	ug/l	04/01/20	04/01/20	
Styrene	ND		1	ug/l	04/01/20	04/01/20	
Tetrachloroethene	ND		1	ug/l	04/01/20	04/01/20	
Methyl t-butyl ether (MTBE)	ND		1	ug/l	04/01/20	04/01/20	
Toluene	ND		1	ug/l	04/01/20	04/01/20	
trans-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20	
trans-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20	
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/01/20	04/01/20	
Trichloroethene	ND		1	ug/l	04/01/20	04/01/20	
Trichlorofluoromethane	ND		1	ug/l	04/01/20	04/01/20	
Vinyl acetate (TIC)	ND		5	ug/l	04/01/20	04/01/20	
Vinyl Chloride	ND		1	ug/l	04/01/20	04/01/20	
Total xylenes	ND		2	ug/l	04/01/20	04/01/20	
Surrogate(s)	Recovery%		Limi	ts			
Toluene-d8	97.9%		70-1.	30	04/01/20	04/01/20	
1,2-Dichloroethane-d4	102%		70-1.	30	04/01/20	04/01/20	
4-Bromofluorobenzene	94.2%		70-1.	30	04/01/20	04/01/20	

Sample: OW-14

Lab Number: 0C27017-03 (Water)

		Keporuni	•		Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed							
.,1,1,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20							
,1,1-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20							
,1,2,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20							
,1,2-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20							
,1-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20							
,1-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20							
,1-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20							
,2,3-Trichloropropane	ND	1	ug/l	04/01/20	04/01/20							
,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	04/01/20	04/01/20							
,2-Dibromoethane (EDB)	ND	1	ug/l	04/01/20	04/01/20							
,2-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20							
,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20							
,3-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20							
,,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20							
-Hexanone	ND	5	ug/l	04/01/20	04/01/20							
-Methyl-2-pentanone	ND	5	ug/l	04/01/20	04/01/20							
Acetone	6	5	ug/l	04/01/20	04/01/20							
cetonitrile	ND	5	ug/l	04/01/20	04/01/20							
crolein	ND	5	ug/l	04/01/20	04/01/20							
crylonitrile	ND	5	ug/l	04/01/20	04/01/20							
allyl chloride (TIC)	ND	5	ug/l	04/01/20	04/01/20							
Benzene	2	1	ug/l	04/01/20	04/01/20							
romochloromethane	ND	1	ug/l	04/01/20	04/01/20							
romodichloromethane	ND	1	ug/l	04/01/20	04/01/20							
romoform	ND	1	ug/l	04/01/20	04/01/20							
arbon Disulfide	ND	1	ug/l	04/01/20	04/01/20							
Carbon Tetrachloride	ND	1	ug/l	04/01/20	04/01/20							
Chlorobenzene	10	1	ug/l	04/01/20	04/01/20							
Chloroethane	1	1	ug/l	04/01/20	04/01/20							
Chloroform	ND	1	ug/l	04/01/20	04/01/20							
Chloroprene (TIC)	ND	1	ug/l	04/01/20	04/01/20							
is-1,2-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20							
is-1,3-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20							
Dibromochloromethane	ND	1	ug/l	04/01/20	04/01/20							
Dichlorodifluoromethane	ND	1	ug/l	04/01/20	04/01/20							
ithyl Methacrylate (TIC)	ND	5	ug/l	04/01/20	04/01/20							
thylbenzene	ND	1	ug/l	04/01/20	04/01/20							
sobutyl Alcohol (TIC)	ND	20	ug/l	04/01/20	04/01/20							
sodrin (TIC)	ND	5	ug/l	04/01/20	04/01/20							
,3-Dichlorobenzene	ND	1	ug/l	04/01/20	04/01/20							
ethacrylonitrile (TIC)	ND	10	ug/l	04/01/20	04/01/20							
romomethane	ND	10	ug/l	04/01/20	04/01/20							
Chloromethane	ND ND	1	ug/l	04/01/20	04/01/20							
-Butanone	ND	5		04/01/20	04/01/20							
-butanone Nethyl iodide (TIC)	ND ND	5	ug/l	04/01/20	04/01/20							
Nethylmethacrylate	ND ND	10	ug/l		04/01/20							
icu ivii ileti iati viate	ND	10	ug/l	04/01/20	U4/U1/2U							
Dibromomethane	ND	1	ug/l	04/01/20	04/01/20							

Sample: OW-14 (Continued) Lab Number: 0C27017-03 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
1,4-Dichlorobenzene	2		1	ug/l	04/01/20	04/01/20
Propionitrile (TIC)	ND		20	ug/l	04/01/20	04/01/20
Styrene	ND		1	ug/l	04/01/20	04/01/20
Tetrachloroethene	ND		1	ug/l	04/01/20	04/01/20
Methyl t-butyl ether (MTBE)	6		1	ug/l	04/01/20	04/01/20
Toluene	ND		1	ug/l	04/01/20	04/01/20
trans-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20
trans-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/01/20	04/01/20
Trichloroethene	ND		1	ug/l	04/01/20	04/01/20
Trichlorofluoromethane	ND		1	ug/l	04/01/20	04/01/20
Vinyl acetate (TIC)	ND		5	ug/l	04/01/20	04/01/20
Vinyl Chloride	ND		1	ug/l	04/01/20	04/01/20
Total xylenes	ND		2	ug/l	04/01/20	04/01/20
Surrogate(s)	Recovery%		Limi	ts		
Toluene-d8	98.4%		<i>70-1</i> .	30	04/01/20	04/01/20
1,2-Dichloroethane-d4	102%		70-1.	30	04/01/20	04/01/20
4-Bromofluorobenzene	96.3%		70-1.	30	04/01/20	04/01/20

Sample: OW-15

Lab Number: 0C27017-04 (Water)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
1,1,1,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1,1-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1,2,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1,2-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,1-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20		
1,1-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20		
1,2,3-Trichloropropane	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dibromoethane (EDB)	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20		
1,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20		
L,3-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20		
2,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20		
2-Hexanone	ND	5	ug/l	04/01/20	04/01/20		
4-Methyl-2-pentanone	ND	5	ug/l	04/01/20	04/01/20		
Acetone	ND	5	ug/l	04/01/20	04/01/20		
cetonitrile	ND	5	ug/l	04/01/20	04/01/20		
crolein	ND	5	ug/l	04/01/20	04/01/20		
crylonitrile	ND	5	ug/l	04/01/20	04/01/20		
llyl chloride (TIC)	ND	5	ug/l	04/01/20	04/01/20		
enzene	1	1	ug/l	04/01/20	04/01/20		
romochloromethane	ND	1	ug/l	04/01/20	04/01/20		
romodichloromethane	ND	1	ug/l	04/01/20	04/01/20		
romoform	ND	1	ug/l	04/01/20	04/01/20		
arbon Disulfide	ND	1	ug/l	04/01/20	04/01/20		
arbon Tetrachloride	ND	1	ug/l	04/01/20	04/01/20		
hlorobenzene	15	1	ug/l	04/01/20	04/01/20		
Chloroethane	ND	1	ug/l	04/01/20	04/01/20		
Chloroform	ND	1	ug/l	04/01/20	04/01/20		
Chloroprene (TIC)	ND	1	ug/l	04/01/20	04/01/20		
is-1,2-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20		
is-1,3-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20		
Dibromochloromethane	ND	1	ug/l	04/01/20	04/01/20		
Dichlorodifluoromethane	ND	1	ug/l	04/01/20	04/01/20		
thyl Methacrylate (TIC)	ND	5	ug/l	04/01/20	04/01/20		
thylbenzene	ND	1	ug/l	04/01/20	04/01/20		
sobutyl Alcohol (TIC)	ND	20	ug/l	04/01/20	04/01/20		
sodrin (TIC)	ND	5	ug/l	04/01/20	04/01/20		
.3-Dichlorobenzene	ND	1	ug/l	04/01/20	04/01/20		
lethacrylonitrile (TIC)	ND	10	ug/l	04/01/20	04/01/20		
romomethane	ND	1	ug/l	04/01/20	04/01/20		
hloromethane	ND	1	ug/l	04/01/20	04/01/20		
2-Butanone	ND	5	ug/l	04/01/20	04/01/20		
Methyl iodide (TIC)	ND	5	ug/l	04/01/20	04/01/20		
Methylmethacrylate	ND	10	ug/l	04/01/20	04/01/20		
Dibromomethane	ND	1	ug/l	04/01/20	04/01/20		
Methylene Chloride	ND	1	ug/l	04/01/20	04/01/20 Pa		

Sample: OW-15 (Continued) Lab Number: 0C27017-04 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
1,4-Dichlorobenzene	2		1	ug/l	04/01/20	04/01/20
Propionitrile (TIC)	ND		20	ug/l	04/01/20	04/01/20
Styrene	ND		1	ug/l	04/01/20	04/01/20
Tetrachloroethene	ND		1	ug/l	04/01/20	04/01/20
Methyl t-butyl ether (MTBE)	6		1	ug/l	04/01/20	04/01/20
Toluene	ND		1	ug/l	04/01/20	04/01/20
trans-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20
trans-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/01/20	04/01/20
Trichloroethene	ND		1	ug/l	04/01/20	04/01/20
Trichlorofluoromethane	ND		1	ug/l	04/01/20	04/01/20
Vinyl acetate (TIC)	ND		5	ug/l	04/01/20	04/01/20
Vinyl Chloride	ND		1	ug/l	04/01/20	04/01/20
Total xylenes	ND		2	ug/l	04/01/20	04/01/20
Surrogate(s)	Recovery%		Limi	its		
Toluene-d8	97.5%		70-1.	30	04/01/20	04/01/20
1,2-Dichloroethane-d4	103%		70-1.	30	04/01/20	04/01/20
4-Bromofluorobenzene	99.0%		70-1.	30	04/01/20	04/01/20

Sample: OW-17

Lab Number: 0C27017-05 (Water)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
1,1,1,2-Tetrachloroethane	ND	1	ug/l	04/02/20	04/02/20		
1,1,1-Trichloroethane	ND	1	ug/l	04/02/20	04/02/20		
1,1,2,2-Tetrachloroethane	ND	1	ug/l	04/02/20	04/02/20		
1,1,2-Trichloroethane	ND	1	ug/l	04/02/20	04/02/20		
1,1-Dichloroethane	ND	1	ug/l	04/02/20	04/02/20		
1,1-Dichloroethene	ND	1	ug/l	04/02/20	04/02/20		
1,1-Dichloropropene	ND	1	ug/l	04/02/20	04/02/20		
1,2,3-Trichloropropane	ND	1	ug/l	04/02/20	04/02/20		
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	04/02/20	04/02/20		
1,2-Dibromoethane (EDB)	ND	1	ug/l	04/02/20	04/02/20		
1,2-Dichloroethane	ND	1	ug/l	04/02/20	04/02/20		
1,2-Dichloropropane	ND	1	ug/l	04/02/20	04/02/20		
1,3-Dichloropropane	ND	1	ug/l	04/02/20	04/02/20		
2,2-Dichloropropane	ND	1	ug/l	04/02/20	04/02/20		
2-Hexanone	ND	5	ug/l	04/02/20	04/02/20		
4-Methyl-2-pentanone	ND	5	ug/l	04/02/20	04/02/20		
Acetone	ND	5	ug/l	04/02/20	04/02/20		
Acetonitrile	ND	5	ug/l	04/02/20	04/02/20		
Acrolein	ND	5	ug/l	04/02/20	04/02/20		
Acrylonitrile	ND	5	ug/l	04/02/20	04/02/20		
Allyl chloride (TIC)	ND	5	ug/l	04/02/20	04/02/20		
Benzene	ND	1	ug/l	04/02/20	04/02/20		
Bromochloromethane	ND	1	ug/l	04/02/20	04/02/20		
Bromodichloromethane	ND	1	ug/l	04/02/20	04/02/20		
Bromoform	ND	1	ug/l	04/02/20	04/02/20		
Carbon Disulfide	ND	1	ug/l	04/02/20	04/02/20		
Carbon Tetrachloride	ND	1	ug/l	04/02/20	04/02/20		
Chlorobenzene	ND	1	ug/l	04/02/20	04/02/20		
Chloroethane	ND	1	ug/l	04/02/20	04/02/20		
Chloroform	ND	1	ug/l	04/02/20	04/02/20		
Chloroprene (TIC)	ND	1	ug/l	04/02/20	04/02/20		
cis-1,2-Dichloroethene	ND	1	ug/l	04/02/20	04/02/20		
cis-1,3-Dichloropropene	ND	1	ug/l	04/02/20	04/02/20		
Dibromochloromethane	ND	1	ug/l	04/02/20	04/02/20		
Dichlorodifluoromethane	ND	1	ug/l	04/02/20	04/02/20		
Ethyl Methacrylate (TIC)	ND ND	5	ug/I ug/I	04/02/20	04/02/20		
Ethylbenzene	ND ND	1		04/02/20	04/02/20		
Isobutyl Alcohol (TIC)	ND ND	20	ug/l ug/l	04/02/20	04/02/20		
Isodrin (TIC)	ND ND	5	ug/i ug/l	04/02/20	04/02/20		
1,3-Dichlorobenzene	ND ND	1	ug/l	04/02/20	04/02/20		
Methacrylonitrile (TIC)	ND ND	10	ug/l	04/02/20	04/02/20		
Bromomethane	ND	10	ug/l	04/02/20	04/02/20		
Chloromethane	ND ND	1	ug/l	04/02/20	04/02/20		
2-Butanone	ND	5	ug/l	04/02/20	04/02/20		
Methyl iodide (TIC)	ND ND	5	ug/l ug/l	04/02/20	04/02/20		
Methylmethacrylate	ND	10	ug/l	04/02/20	04/02/20		
Dibromomethane	ND ND	10	ug/l ug/l	04/02/20	04/02/20		
				01/04/40	07/02/20		

Sample: OW-17 (Continued) Lab Number: 0C27017-05 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	ND		1	ug/l	04/02/20	04/02/20
1,4-Dichlorobenzene	ND		1	ug/l	04/02/20	04/02/20
Propionitrile (TIC)	ND		20	ug/l	04/02/20	04/02/20
Styrene	ND		1	ug/l	04/02/20	04/02/20
Tetrachloroethene	ND		1	ug/l	04/02/20	04/02/20
Methyl t-butyl ether (MTBE)	ND		1	ug/l	04/02/20	04/02/20
Toluene	ND		1	ug/l	04/02/20	04/02/20
trans-1,2-Dichloroethene	ND		1	ug/l	04/02/20	04/02/20
trans-1,3-Dichloropropene	ND		1	ug/l	04/02/20	04/02/20
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/02/20	04/02/20
Trichloroethene	ND		1	ug/l	04/02/20	04/02/20
Trichlorofluoromethane	ND		1	ug/l	04/02/20	04/02/20
Vinyl acetate (TIC)	ND		5	ug/l	04/02/20	04/02/20
Vinyl Chloride	ND		1	ug/l	04/02/20	04/02/20
Total xylenes	ND		2	ug/l	04/02/20	04/02/20
Surrogate(s)	Recovery%		Limi	ts		
Toluene-d8	89.7%		70-1.	30	04/02/20	04/02/20
1,2-Dichloroethane-d4	103%		70-1.	30	04/02/20	04/02/20
4-Bromofluorobenzene	89.0%		70-1.	30	04/02/20	04/02/20

Sample: OW-7

Lab Number: 0C27017-06 (Water)

		Reporting)		
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
1,1,1,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,1-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,2,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,2-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20
1,2,3-Trichloropropane	ND	1	ug/l	04/01/20	04/01/20
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	04/01/20	04/01/20
1,2-Dibromoethane (EDB)	ND	1	ug/l	04/01/20	04/01/20
1,2-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
1,3-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
2,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
2-Hexanone	ND	5	ug/l	04/01/20	04/01/20
I-Methyl-2-pentanone	ND	5	ug/l	04/01/20	04/01/20
Acetone	ND	5	ug/l	04/01/20	04/01/20
cetonitrile	ND	5	ug/l	04/01/20	04/01/20
crolein	ND	5	ug/l	04/01/20	04/01/20
crylonitrile	ND	5	ug/l	04/01/20	04/01/20
allyl chloride (TIC)	ND	5	ug/l	04/01/20	04/01/20
enzene	ND	1	ug/l	04/01/20	04/01/20
romochloromethane	ND	1	ug/l	04/01/20	04/01/20
romodichloromethane	ND	1	ug/l	04/01/20	04/01/20
romoform	ND	1	ug/l	04/01/20	04/01/20
arbon Disulfide	ND	1	ug/l	04/01/20	04/01/20
arbon Tetrachloride	ND	1	ug/l	04/01/20	04/01/20
hlorobenzene	ND	1	ug/l	04/01/20	04/01/20
hloroethane	ND	1	ug/l	04/01/20	04/01/20
Chloroform	ND	1	ug/l	04/01/20	04/01/20
Chloroprene (TIC)	ND	1	ug/l	04/01/20	04/01/20
is-1,2-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20
cis-1,3-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20
Dibromochloromethane	ND	1	ug/l	04/01/20	04/01/20
vichlorodifluoromethane	ND	1	ug/l	04/01/20	04/01/20
thyl Methacrylate (TIC)	ND	5	ug/l	04/01/20	04/01/20
thylbenzene	ND	1	ug/l	04/01/20	04/01/20
sobutyl Alcohol (TIC)	ND	20	ug/l	04/01/20	04/01/20
sodrin (TIC)	ND	5	ug/l	04/01/20	04/01/20
,3-Dichlorobenzene	ND	1	ug/l	04/01/20	04/01/20
ethacrylonitrile (TIC)	ND	10	ug/l	04/01/20	04/01/20
romomethane	ND	1	ug/l	04/01/20	04/01/20
Chloromethane	ND	1	ug/l	04/01/20	04/01/20
l-Butanone	ND	5	ug/l	04/01/20	04/01/20
Methyl iodide (TIC)	ND	5	ug/l	04/01/20	04/01/20
Methylmethacrylate	ND	10	ug/l	04/01/20	04/01/20
Dibromomethane	ND	1	ug/l	04/01/20	04/01/20
Methylene Chloride	ND	1	ug/l	04/01/20	04/0: Pa

Sample: OW-7 (Continued) Lab Number: 0C27017-06 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
1,4-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
Propionitrile (TIC)	ND		20	ug/l	04/01/20	04/01/20
Styrene	ND		1	ug/l	04/01/20	04/01/20
Tetrachloroethene	ND		1	ug/l	04/01/20	04/01/20
Methyl t-butyl ether (MTBE)	4		1	ug/l	04/01/20	04/01/20
Toluene	ND		1	ug/l	04/01/20	04/01/20
trans-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20
trans-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/01/20	04/01/20
Trichloroethene	ND		1	ug/l	04/01/20	04/01/20
Trichlorofluoromethane	ND		1	ug/l	04/01/20	04/01/20
Vinyl acetate (TIC)	ND		5	ug/l	04/01/20	04/01/20
Vinyl Chloride	ND		1	ug/l	04/01/20	04/01/20
Total xylenes	ND		2	ug/l	04/01/20	04/01/20
Surrogate(s)	Recovery%		Limi	ts		
Toluene-d8	96.9%		<i>70-1</i> .	30	04/01/20	04/01/20
1,2-Dichloroethane-d4	102%		70-1.	30	04/01/20	04/01/20
4-Bromofluorobenzene	95.1%		70-1.	30	04/01/20	04/01/20

Sample: OW-16

Lab Number: 0C27017-07 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
1,1,1,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,1-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,2,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,2-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20
1,2,3-Trichloropropane	ND	1	ug/l	04/01/20	04/01/20
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	04/01/20	04/01/20
1,2-Dibromoethane (EDB)	ND	1	ug/l	04/01/20	04/01/20
1,2-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
1,3-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
2,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
2-Hexanone	ND	5	ug/l	04/01/20	04/01/20
4-Methyl-2-pentanone	ND	5	ug/l	04/01/20	04/01/20
Acetone	ND	5	ug/l	04/01/20	04/01/20
Acetonitrile	ND	5	ug/l	04/01/20	04/01/20
Acrolein	ND	5	ug/l	04/01/20	04/01/20
Acrylonitrile	ND	5	ug/l	04/01/20	04/01/20
Allyl chloride (TIC)	ND	5	ug/l	04/01/20	04/01/20
Benzene	ND	1	ug/l	04/01/20	04/01/20
Bromochloromethane	ND	1	ug/l	04/01/20	04/01/20
Bromodichloromethane	ND	1	ug/l	04/01/20	04/01/20
Bromoform	ND	1	ug/l	04/01/20	04/01/20
Carbon Disulfide	ND	1	ug/l	04/01/20	04/01/20
Carbon Tetrachloride	ND	1	ug/l	04/01/20	04/01/20
Chlorobenzene	ND	1	ug/l	04/01/20	04/01/20
Chloroethane	ND	1	ug/l	04/01/20	04/01/20
Chloroform	ND	1	ug/l	04/01/20	04/01/20
Chloroprene (TIC)	ND	1	ug/l	04/01/20	04/01/20
cis-1,2-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20
cis-1,3-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20
Dibromochloromethane	ND	1	ug/l	04/01/20	04/01/20
Dichlorodifluoromethane	ND	1	ug/l	04/01/20	04/01/20
Ethyl Methacrylate (TIC)	ND	5	ug/l	04/01/20	04/01/20
Ethylbenzene	ND	1	ug/l	04/01/20	04/01/20
Isobutyl Alcohol (TIC)	ND	20	ug/l	04/01/20	04/01/20
(Sodrin (TIC)	ND	5	ug/l	04/01/20	04/01/20
1,3-Dichlorobenzene	ND	1	ug/l	04/01/20	04/01/20
Methacrylonitrile (TIC)	ND	10	ug/l	04/01/20	04/01/20
Bromomethane	ND	1	ug/l	04/01/20	04/01/20
Chloromethane	ND	1	ug/l	04/01/20	04/01/20
2-Butanone	ND	5	ug/l	04/01/20	04/01/20
Methyl iodide (TIC)	ND	5	ug/l	04/01/20	04/01/20
Methylmethacrylate	ND	10	ug/l	04/01/20	04/01/20
Dibromomethane	ND	1	ug/l	04/01/20	04/01/20
-io. oomediane	ND	-	49/1	04/01/20	04/01/20 Pa

Sample: OW-16 (Continued) Lab Number: 0C27017-07 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
1,4-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
Propionitrile (TIC)	ND		20	ug/l	04/01/20	04/01/20
Styrene	ND		1	ug/l	04/01/20	04/01/20
Tetrachloroethene	ND		1	ug/l	04/01/20	04/01/20
Methyl t-butyl ether (MTBE)	ND		1	ug/l	04/01/20	04/01/20
Toluene	ND		1	ug/l	04/01/20	04/01/20
trans-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20
trans-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/01/20	04/01/20
Trichloroethene	ND		1	ug/l	04/01/20	04/01/20
Trichlorofluoromethane	ND		1	ug/l	04/01/20	04/01/20
Vinyl acetate (TIC)	ND		5	ug/l	04/01/20	04/01/20
Vinyl Chloride	ND		1	ug/l	04/01/20	04/01/20
Total xylenes	ND		2	ug/l	04/01/20	04/01/20
Surrogate(s)	Recovery%		Limi	ts		
Toluene-d8	97.3%		<i>70-1</i> .	30	04/01/20	04/01/20
1,2-Dichloroethane-d4	102%		70-1.	30	04/01/20	04/01/20
4-Bromofluorobenzene	94.9%		70-1.	30	04/01/20	04/01/20

Sample: OW-13

Lab Number: 0C27017-08 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
1,1,1,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,1-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,2,2-Tetrachloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1,2-Trichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20
1,1-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20
1,2,3-Trichloropropane	ND	1	ug/l	04/01/20	04/01/20
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	04/01/20	04/01/20
1,2-Dibromoethane (EDB)	ND	1	ug/l	04/01/20	04/01/20
1,2-Dichloroethane	ND	1	ug/l	04/01/20	04/01/20
1,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
I,3-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
2,2-Dichloropropane	ND	1	ug/l	04/01/20	04/01/20
2-Hexanone	ND	5	ug/l	04/01/20	04/01/20
1-Methyl-2-pentanone	ND	5	ug/l	04/01/20	04/01/20
Acetone	ND	5	ug/l	04/01/20	04/01/20
Acetonitrile	ND	5	ug/l	04/01/20	04/01/20
Acrolein	ND	5	ug/l	04/01/20	04/01/20
acrylonitrile	ND	5	ug/l	04/01/20	04/01/20
Allyl chloride (TIC)	ND	5	ug/l	04/01/20	04/01/20
enzene	ND	1	ug/l	04/01/20	04/01/20
romochloromethane	ND	1	ug/l	04/01/20	04/01/20
romodichloromethane	ND	1	ug/l	04/01/20	04/01/20
romoform	ND	1	ug/l	04/01/20	04/01/20
arbon Disulfide	ND	1	ug/l	04/01/20	04/01/20
Carbon Tetrachloride	ND	1	ug/l	04/01/20	04/01/20
Chlorobenzene	5	1	ug/l	04/01/20	04/01/20
hloroethane	ND	1	ug/l	04/01/20	04/01/20
Chloroform	ND	1	ug/l	04/01/20	04/01/20
Chloroprene (TIC)	ND	1	ug/l	04/01/20	04/01/20
is-1,2-Dichloroethene	ND	1	ug/l	04/01/20	04/01/20
cis-1,3-Dichloropropene	ND	1	ug/l	04/01/20	04/01/20
Dibromochloromethane	ND	1	ug/l	04/01/20	04/01/20
Dichlorodifluoromethane	ND	1	ug/l	04/01/20	04/01/20
thyl Methacrylate (TIC)	ND	5	ug/l	04/01/20	04/01/20
thylbenzene	ND	1	ug/l	04/01/20	04/01/20
sobutyl Alcohol (TIC)	ND	20	ug/l	04/01/20	04/01/20
sodrin (TIC)	ND	5	ug/l	04/01/20	04/01/20
3-Dichlorobenzene	ND	1	ug/l	04/01/20	04/01/20
ethacrylonitrile (TIC)	ND	10	ug/l	04/01/20	04/01/20
romomethane	ND	1	ug/l	04/01/20	04/01/20
Chloromethane	ND	1	ug/l	04/01/20	04/01/20
g-Butanone	ND	5	ug/l	04/01/20	04/01/20
Methyl iodide (TIC)	ND	5	ug/l	04/01/20	04/01/20
Methylmethacrylate	ND ND	10	ug/l	04/01/20	04/01/20
Dibromomethane	ND ND	10	ug/l	04/01/20	04/01/20
Methylene Chloride	ND	1	ug/l	04/01/20	04/01/20 Pa

Sample: OW-13 (Continued) Lab Number: 0C27017-08 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	ND		1	ug/l	04/01/20	04/01/20
1,4-Dichlorobenzene	1		1	ug/l	04/01/20	04/01/20
Propionitrile (TIC)	ND		20	ug/l	04/01/20	04/01/20
Styrene	ND		1	ug/l	04/01/20	04/01/20
Tetrachloroethene	ND		1	ug/l	04/01/20	04/01/20
Methyl t-butyl ether (MTBE)	4		1	ug/l	04/01/20	04/01/20
Toluene	ND		1	ug/l	04/01/20	04/01/20
trans-1,2-Dichloroethene	ND		1	ug/l	04/01/20	04/01/20
trans-1,3-Dichloropropene	ND		1	ug/l	04/01/20	04/01/20
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l	04/01/20	04/01/20
Trichloroethene	ND		1	ug/l	04/01/20	04/01/20
Trichlorofluoromethane	ND		1	ug/l	04/01/20	04/01/20
Vinyl acetate (TIC)	ND		5	ug/l	04/01/20	04/01/20
Vinyl Chloride	ND		1	ug/l	04/01/20	04/01/20
Total xylenes	ND		2	ug/l	04/01/20	04/01/20
Surrogate(s)	Recovery%		Limi	ts		
Toluene-d8	97.9%		70-13	30	04/01/20	04/01/20
1,2-Dichloroethane-d4	102%		70-13	30	04/01/20	04/01/20
4-Bromofluorobenzene	96.3%		70-13	30	04/01/20	04/01/20

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
B-1-1- B001310 M: 1 B'										
Batch: BOC1210 - Metals Dig	gestion Waters				Duamanad) Amalumadi ()	2/20/20			
Blank (B0C1210-BLK1)	ND		0.0001	/1	Prepared (& Analyzed: 03	3/30/20			
Thallium	ND		0.0001	mg/L						
Antimony	ND		0.0001	mg/L						
Cobalt	ND		0.0001	mg/L						
Cadmium	ND		0.0001	mg/L						
Nickel	ND		0.001	mg/l						
Selenium	ND		0.005	mg/L						
Chromium	ND		0.0001	mg/L						
Tin	ND		0.005	mg/l						
Beryllium	ND		0.0001	mg/L						
Copper	ND		0.001	mg/l						
Barium	ND		0.001	mg/l						
Vanadium	ND		0.0005	mg/L						
Zinc	ND		0.001	mg/l						
Arsenic	ND		0.0001	mg/L						
Silver	ND		0.0001	mg/L						
Lead	ND		0.0001	mg/L						
LCS (B0C1210-BS2)					Prepared 8	& Analyzed: 03	3/30/20			
Nickel	0.190		0.001	mg/l	0.200		95.1	85-115		
Silver	0.0189		0.0001	mg/L	0.0200		94.5	85-115		
Antimony	0.0201		0.0001	mg/L	0.0200		100	85-115		
Tin	0.019		0.005	mg/l	0.0200		95.6	85-115		
Thallium	0.0201		0.0001	mg/L	0.0200		100	85-115		
Vanadium	0.0197		0.0005	mg/L	0.0200		98.6	85-115		
Zinc	0.173		0.001	mg/l	0.200		86.3	85-115		
Selenium	0.017		0.005	mg/L	0.0200		85.9	85-115		
Beryllium	0.0200		0.0001	mg/L	0.0200		99.9	85-115		
Copper	0.173		0.001	mg/l	0.200		86.6	85-115		
Chromium	0.0202		0.0001	mg/L	0.0200		101	85-115		
Cobalt	0.0197		0.0001	mg/L	0.0200		98.4	85-115		
Barium	0.220		0.001	mg/l	0.200		110	85-115		
Cadmium	0.0198		0.0001	mg/L	0.0200		98.8	85-115		
Arsenic	0.0178		0.0001	mg/L	0.0200		88.9	85-115		
Lead	0.0205		0.0001	mg/L	0.0200		103	85-115		

Quality Control (Continued)										
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B0C1244 - Metals Co	old-Vapor Mercu	ry								
Blank (B0C1244-BLK1)	-	-			Prepared 8	& Analyzed: 0	3/30/20			
Mercury	ND		0.0002	mg/L						
LCS (B0C1244-BS1)					Prepared 8	& Analyzed: 0	3/30/20			
Mercury	0.0010		0.0002	ma/l	0.00100		105	85-115		

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B0D0047 - Purge-Trap										
Blank (B0D0047-BLK1)					Prepared 8	& Analyzed: 0	4/01/20			
1,1,1,2-Tetrachloroethane	ND		1	ug/l			.,,			
1,1,1-Trichloroethane	ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Acetone	ND		5	ug/l						
Acetonitrile	ND		5	ug/l						
Acrolein	ND		5	ug/l						
Acrylonitrile	ND		5	ug/l						
Allyl chloride (TIC)	ND		5	ug/l						
Benzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloroprene (TIC)	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1							
Ethyl Methacrylate (TIC)	ND		5	ug/l ug/l						
Ethylbenzene	ND		1	ug/l						
Isobutyl Alcohol (TIC)	ND		20	ug/l						
Isodrin (TIC)	ND		5	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
Methacrylonitrile (TIC)	ND ND		10							
Bromomethane	ND ND			ug/l						
Chloromethane	ND ND		1 1	ug/l						
2-Butanone	ND ND		5	ug/l						
Methyl iodide (TIC)	ND ND		5	ug/l						
Methylmethacrylate	ND ND		10	ug/l						
Dibromomethane	ND ND		10	ug/l						
Methylene Chloride	ND ND			ug/l						
	ND ND		1	ug/l						
1,2-Dichlorobenzene 1,4-Dichlorobenzene	ND ND		1	ug/l						
Propionitrile (TIC)	ND ND		1 20	ug/l						
				ug/l						
Styrene	ND ND		1	ug/l						
Tetrachloroethene	ND ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Toluene	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l					Page	34 of

Volatile Organic Compounds (Continued)

Batch: B0D0047 - Purge-Trap (Continued) Blank (B0D0047-BLK1) trans-1,4-Dichloro-2-Butene (TIC) ND Trichloroethene ND Vinyl acetate (TIC) ND Vinyl Acetate (TIC) ND Vinyl Chloride ND Total xylenes ND Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene 51 1,1,1,2-Tetrachloroethane 51 1,1,1,2-Tetrachloroethane 52 1,1,2-Trichloroethane 52 1,1,2-Trichloroethane 52 1,1-Dichloroethene 53 1,1-Dichloroethene 53 1,1-Dichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 56 4-Methyl-2-pentanone 56 4-Methyl-2-pentanone 51 <	1 5 2 1 5 1 2 48.7 51.7 47.5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0	Result & Analyzed: 04	97.3 103	70-130 70-130	RPD	Limit
Blank (B0D0047-BLK1) trans-1,4-Dichloro-2-Butene (TIC) ND Trichloroethene ND Trichlorofluoromethane ND Vinyl acetate (TIC) ND Vinyl Chloride ND Total xylenes ND Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (B0D0047-BS1) 1,1,1-2-Tetrachloroethane 1,1,2-Tetrachloroethane 51 1,1,2-Tetrachloroethane 52 1,1-2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloroethane 51 1,1-Dichloroethene 53 1,1-Dichloropropane 52 1,2-J-Dibromoethane (EDB) 52 1,2-Dibromoethane (EDB) 52 1,2-Dichloropropane 52 1,2-Dichloropropane 53 2,2-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 56 4-Methyl-2-pentanone 52 Acetone	2 1 5 1 2 48.7 51.7	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 Prepared	& Analyzed: 04	97.3 103			
trans-1,4-Dichloro-2-Butene (TIC) ND Trichloroethene ND Trichlorofluoromethane ND Vinyl acetate (TIC) ND Vinyl Chloride ND Total xylenes ND Surrogate: Toluene-d8 ND Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (B0D0047-BS1) 51 1,1,1,2-Tetrachloroethane 53 1,1,2-Trichloroethane 52 1,1,2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloroethane 51 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromoethane (EDB) 52 1,2-Dibromoethane (EDB) 52 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromodichloromet	2 1 5 1 2 48.7 51.7	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 Prepared	x Analyzeu. O	97.3 103			
Trichloroethene ND Trichlorofluoromethane ND Vinyl acetate (TIC) ND Vinyl Chloride ND Total xylenes ND Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (BOD0047-BS1) 1,1,1,2-Tetrachloroethane 51 1,1,1-Trichloroethane 52 1,1,2-Trichloroethane 52 1,1,2-Trichloroethane 52 1,1,2-Trichloroethane 51 1,1-Dichloroethane 53 1,1-Dichloroethane 51 1,1-Dichloroethane 52 1,2-Dibromo-3-chloropropane 52 1,2-Dibromo-3-chloropropane 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50	2 1 5 1 2 48.7 51.7	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 Prepared		103			
Trichlorofluoromethane Vinyl acetate (TIC) Vinyl Chloride ND Total xylenes ND Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (BOD0047-BS1) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 1	1 5 1 2 48.7 51.7	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 Prepared		103			
Vinyl Acetate (TIC) Vinyl Chloride ND Total xylenes ND Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (BOD0047-BS1) 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Jichloropropane 1,2-Jibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dich	5 1 2 48.7 51.7	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 Prepared		103			
Vinyl Chloride ND Total xylenes ND Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene 5 LCS (BOD0047-BS1) 51 1,1,1,2-Tetrachloroethane 51 1,1,1,2-Tetrachloroethane 52 1,1,2-Trichloroethane 52 1,1,1-Dichloroethane 51 1,1-Dichloroethane 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene	1 2 48.7 51.7	ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 Prepared		103			
Total xylenes ND Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (BOD0047-BS1) 1,1,1,2-Tetrachloroethane 51 1,1,1,1-Trichloroethane 52 1,1,2-Trichloroethane 52 1,1,2-Trichloroethane 51 1,1-Dichloroethane 53 1,1-Dichloropropene 54 1,2-3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloropropane 52 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50	2 48.7 51.7	ug/l ug/l ug/l ug/l ug/l	50.0 50.0 Prepared		103			
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (BOD0047-BS1) 1,1,1,2-Tetrachloroethane 51 1,1,1,1-Trichloroethane 52 1,1,2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloroethene 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50	48.7 51.7	ug/l ug/l ug/l ug/l ug/l	50.0 50.0 Prepared		103			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene LCS (B0D0047-BS1) 1,1,1,2-Tetrachloroethane 51 1,1,1-Trichloroethane 53 1,1,2-Trichloroethane 52 1,1,1-Dichloroethane 51 1,1-Dichloroethane 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50	51.7	ug/l ug/l ug/l ug/l	50.0 50.0 Prepared		103			
Surrogate: 4-Bromofluorobenzene LCS (B0D0047-BS1) 1,1,1,2-Tetrachloroethane 51 1,1,1-Trichloroethane 53 1,1,2,2-Tetrachloroethane 52 1,1,1-Dichloroethane 51 1,1-Dichloroethane 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		ug/l ug/l ug/l	50.0 Prepared			70-130		
LCS (B0D0047-BS1) 1,1,1,2-Tetrachloroethane 51 1,1,1,2-Trichloroethane 53 1,1,2,2-Tetrachloroethane 52 1,1,2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloropropene 54 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50	47.5	ug/l ug/l	Prepared		~			
1,1,1,2-Tetrachloroethane 51 1,1,1-Trichloroethane 53 1,1,2,2-Tetrachloroethane 52 1,1,2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloropethane 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		ug/l			95.0	70-130		
1,1,1-Trichloroethane 53 1,1,2,2-Tetrachloroethane 52 1,1,2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloroethene 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		ug/l	50.0	& Analyzed: 04	4/01/20			
1,1,2,2-Tetrachloroethane 52 1,1,2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloroethene 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		ug/l			103	70-130		
1,1,2-Trichloroethane 52 1,1-Dichloroethane 51 1,1-Dichloroethene 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 53 2,2-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		_	50.0		105	70-130		
1,1-Dichloroethane 51 1,1-Dichloroethene 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50			50.0		104	70-130		
1,1-Dichloroethane 51 1,1-Dichloroethene 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		ug/l	50.0		104	70-130		
1,1-Dichloroethene 53 1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		ug/l	50.0		102	70-130		
1,1-Dichloropropene 54 1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Chlorobenzene 50		ug/l	50.0		107	70-130		
1,2,3-Trichloropropane 52 1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		108	70-130		
1,2-Dibromo-3-chloropropane (DBCP) 51 1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		105	70-130		
1,2-Dibromoethane (EDB) 52 1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		103	70-130		
1,2-Dichloroethane 50 1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		104	70-130		
1,2-Dichloropropane 52 1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		99.2	70-130		
1,3-Dichloropropane 53 2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		104	70-130		
2,2-Dichloropropane 55 2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		105	70-130		
2-Hexanone 56 4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		109	70-130		
4-Methyl-2-pentanone 52 Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		112	70-130		
Acetone 56 Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		105	70-130		
Benzene 52 Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		111	70-130		
Bromochloromethane 51 Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		105	70-130		
Bromodichloromethane 51 Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50			50.0		103	70-130		
Bromoform 47 Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		102	70-130		
Carbon Disulfide 54 Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		93.5	70-130		
Carbon Tetrachloride 54 Chlorobenzene 50		ug/l	50.0		108	70-130		
Chlorobenzene 50		ug/l	50.0		107	70-130		
		ug/l				70-130		
		ug/l	50.0 50.0		99.9 100	70-130		
Chloroethane 50 Chloroform 50		ug/l	50.0		100	70-130 70-130		
		ug/l						
cis-1,2-Dichloroethene 47 cis-1,3-Dichloropropene 53		ug/l	50.0 50.0		94.2 105	70-130 70-130		
Dibromochloromethane 52		ug/l	50.0 50.0		105 104	70-130 70-130		
Dichlorodifluoromethane 55 Dichlorodifluoromethane 55		ug/l						
		ug/l	50.0		110	70-130 70-130		
•		ug/l	50.0		109	70-130 70-130		
1,3-Dichlorobenzene 51 Bromomethane 44		ug/l	50.0		102	70-130		
		ug/l	50.0		87.9 92.6	70-130 70-130		
Chloromethane 46		ug/l	50.0		92.6	70-130 70-130		
2-Butanone 55 Dibromomethane 52		ug/l	50.0		109	70-130		
		ug/l	50.0		104	70-130		
Methylene Chloride 57		ug/l	50.0		113	70-130		
1,2-Dichlorobenzene 51		ug/l	50.0		102	70-130		
1,4-Dichlorobenzene 50		ug/l	50.0		99.5	70-130		
Styrene 56		ug/l	50.0		111	70-130		
Tetrachloroethene 53		ug/l	50.0		106	70-130		
Methyl t-butyl ether (MTBE) 53		ug/l	50.0		106	70-130		
Toluene 52		ug/l	50.0		104	70-130		
trans-1,2-Dichloroethene 51		ug/l	50.0		102	70-130		
trans-1,3-Dichloropropene 55 Trichloroethene 51		ug/l ug/l	50.0 50.0		109 101	70-130 70-130		

Page 35 of 42

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u> </u>				511165	20701	. court	701120			
Batch: B0D0047 - Purge-Trap ((Continued)				Dropprod	P. Analyzadi O.	4/01/20			
LCS (B0D0047-BS1)	F1					& Analyzed: 0		70 120		
Trichlorofluoromethane	51			ug/l	50.0		101	70-130		
Vinyl Chloride	51			ug/l	50.0		101	70-130		
Surrogate: Toluene-d8			50.2	ug/l	50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4			48.8	ug/l	50.0		97.6	70-130		
Surrogate: 4-Bromofluorobenzene			50.1	ug/l	50.0		100	70-130		
LCS Dup (B0D0047-BSD1)					Prepared	& Analyzed: 0	4/01/20			
1,1,1,2-Tetrachloroethane	51			ug/l	50.0		101	70-130	1.58	200
1,1,1-Trichloroethane	52			ug/l	50.0		104	70-130	1.74	200
1,1,2,2-Tetrachloroethane	53			ug/l	50.0		106	70-130	2.39	20
1,1,2-Trichloroethane	52			ug/l	50.0		104	70-130	0.272	200
1,1-Dichloroethane	50			ug/l	50.0		101	70-130	1.67	20
1,1-Dichloroethene	51			ug/l	50.0		101	70-130	5.46	200
1,1-Dichloropropene	52			ug/l	50.0		105	70-130	3.18	200
1,2,3-Trichloropropane	54			ug/l	50.0		107	70-130	2.36	20
1,2-Dibromo-3-chloropropane (DBCP)	54			ug/l	50.0		107	70-130	4.32	200
1,2-Dibromoethane (EDB)	53			-	50.0		106	70-130	1.96	20
1,2-Dichloroethane	49			ug/l	50.0		98.8	70-130	0.396	20
·	49 51			ug/l	50.0		98.8 102	70-130 70-130	1.99	200
1,2-Dichloropropane				ug/l						
1,3-Dichloropropane	52			ug/l	50.0		105	70-130	0.732	20
2,2-Dichloropropane	53			ug/l	50.0		106	70-130	3.58	20
2-Hexanone	58			ug/l	50.0		115	70-130	2.89	20
4-Methyl-2-pentanone	54			ug/l	50.0		108	70-130	3.61	20
Acetone	55			ug/l	50.0		110	70-130	1.69	20
Benzene	51			ug/l	50.0		103	70-130	2.16	20
Bromochloromethane	51			ug/l	50.0		102	70-130	0.362	20
Bromodichloromethane	51			ug/l	50.0		101	70-130	1.09	20
Bromoform	48			ug/l	50.0		95.1	70-130	1.73	20
Carbon Disulfide	49			ug/l	50.0		98.1	70-130	9.66	20
Carbon Tetrachloride	52			ug/l	50.0		104	70-130	3.00	20
Chlorobenzene	49			ug/l	50.0		98.7	70-130	1.17	20
Chloroethane	47			ug/l	50.0		94.8	70-130	5.75	20
Chloroform	49			ug/l	50.0		97.8	70-130	2.23	20
cis-1,2-Dichloroethene	47			ug/l	50.0		93.8	70-130	0.402	20
cis-1,3-Dichloropropene	52			ug/l	50.0		105	70-130	0.772	20
Dibromochloromethane	52			ug/l	50.0		104	70-130	0.149	20
Dichlorodifluoromethane	53			ug/l	50.0		106	70-130	4.01	20
Ethylbenzene	54			ug/l	50.0		107	70-130	2.14	200
1,3-Dichlorobenzene	51			ug/l	50.0		102	70-130	0.0694	20
Bromomethane	42			-	50.0		83.5	70-130	5.11	20
Chloromethane	44			ug/l	50.0		83.5 87.9	70-130 70-130	5.11	200
	44 55			ug/l						
2-Butanone				ug/l	50.0		110	70-130	0.814	20
Dibromomethane Mathidana Chlorida	52			ug/l	50.0		104	70-130	0.0240	20
Methylene Chloride	57			ug/l	50.0		115	70-130	1.30	20
1,2-Dichlorobenzene	52			ug/l	50.0		103	70-130	1.12	20
1,4-Dichlorobenzene	50			ug/l	50.0		99.8	70-130	0.351	20
Styrene	54			ug/l	50.0		109	70-130	2.11	20
Tetrachloroethene	52			ug/l	50.0		103	70-130	2.59	20
Methyl t-butyl ether (MTBE)	52			ug/l	50.0		105	70-130	1.36	20
Toluene	50			ug/l	50.0		101	70-130	2.55	20
trans-1,2-Dichloroethene	51			ug/l	50.0		102	70-130	0.864	20
trans-1,3-Dichloropropene	54			ug/l	50.0		108	70-130	0.975	20
Trichloroethene	50			ug/l	50.0		99.8	70-130	1.57	20
Trichlorofluoromethane	49			ug/l	50.0		98.9	70-130	2.34	20
Vinyl Chloride	49			ug/l	50.0		97.7	70-130	3.71	20
			EO 0							
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4			50.0 51.1	ug/l ug/l	50.0 50.0		99.9 102	70-130 70-130		

Page 36 of 42

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B0D0047 - Purge-Trap (Co	ontinued)									
LCS Dup (B0D0047-BSD1)	,				Prepared 8	& Analyzed: 0	4/01/20			
Surrogate: 4-Bromofluorobenzene			<i>50.8</i>	ug/l			102	<i>70-130</i>		
Batali BODO107 Bures Trans										
Batch: BOD0107 - Purge-Trap Blank (B0D0107-BLK1)					Prenared 8	& Analyzed: 0	4/02/20			
1,1,1,2-Tetrachloroethane	ND		1	ug/l	ricparca	x Analyzea. 0	1/02/20			
1,1,1-Trichloroethane	ND ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Acetone	ND		5	ug/l						
Acetonitrile	ND		5	ug/l						
Acrolein	ND		5	ug/l						
Acrylonitrile	ND		5	ug/l						
Allyl chloride (TIC)	ND		5	ug/l						
Benzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloroprene (TIC)	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
Ethyl Methacrylate (TIC)	ND		5	ug/l						
Ethylbenzene	ND		1	ug/l						
Isobutyl Alcohol (TIC)	ND		20	ug/l						
Isodrin (TIC)	ND		5	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
Methacrylonitrile (TIC)	ND		10	ug/l						
Bromomethane	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
Methyl iodide (TIC)	ND		5	ug/l						
Methylmethacrylate	ND		10	ug/l						
Dibromomethane	ND		1	ug/l						
Methylene Chloride	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
Propionitrile (TIC)	ND		20	ug/l						
Styrene	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l					Page	37 of

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPC Limi
Batch: BOD0107 - Purge-Trap (Continued)									
Blank (B0D0107-BLK1)	•				Prepared 8	& Analyzed: 0	4/02/20			
Methyl t-butyl ether (MTBE)	ND		1	ug/l	•	,				
Toluene	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
trans-1,4-Dichloro-2-Butene (TIC)	ND		5	ug/l						
Trichloroethene	ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Vinyl acetate (TIC)	ND		5	ug/l						
Vinyl Chloride	ND		1	ug/l						
Total xylenes	ND		2	ug/l						
							00.0	70 120		
Surrogate: Toluene-d8			44.9 51.3	ug/l	50.0 50.0		89.8 103	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4				ug/l						
Surrogate: 4-Bromofluorobenzene			44.2	ug/l	50.0		88.4	70-130		
LCS (B0D0107-BS1)					-	& Analyzed: 0				
1,1,1,2-Tetrachloroethane	50			ug/l	50.0		101	70-130		
1,1,1-Trichloroethane	42			ug/l	50.0		83.1	70-130		
1,1,2,2-Tetrachloroethane	51			ug/l	50.0		102	70-130		
1,1,2-Trichloroethane	41			ug/l	50.0		81.0	70-130		
1,1-Dichloroethane	38			ug/l	50.0		76.4	70-130		
1,1-Dichloroethene	39			ug/l	50.0		77.4	70-130		
1,1-Dichloropropene	44			ug/l	50.0		88.2	70-130		
1,2,3-Trichloropropane	46			ug/l	50.0		91.3	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	52			ug/l	50.0		103	70-130		
1,2-Dibromoethane (EDB)	40			ug/l	50.0		81.0	70-130		
1,2-Dichloroethane	40			ug/l	50.0		79.2	70-130		
1,2-Dichloropropane	41			ug/l	50.0		82.0	70-130		
1,3-Dichloropropane	41			ug/l	50.0		81.9	70-130		
2,2-Dichloropropane	50			ug/l	50.0		99.3	70-130		
2-Hexanone	44			ug/l	50.0		88.9	70-130		
4-Methyl-2-pentanone	42			ug/l	50.0		83.5	70-130		
Acetone	34			ug/l	50.0		68.0	70-130		
Benzene	41			ug/l	50.0		81.7	70-130		
Bromochloromethane	41			ug/l	50.0		81.7	70-130		
Bromodichloromethane	40			ug/l	50.0		80.8	70-130		
Bromoform	51			ug/l	50.0		102	70-130		
Carbon Disulfide	39			ug/l	50.0		78.8	70-130		
Carbon Tetrachloride	42			ug/l	50.0		83.7	70-130		
Chlorobenzene	49			ug/l	50.0		98.0	70-130		
Chloroethane	40			ug/l	50.0		80.1	70-130		
Chloroform	40			ug/l	50.0		79.6	70-130		
cis-1,2-Dichloroethene	43			ug/l	50.0		85.7	70-130		
cis-1,3-Dichloropropene	42			ug/l	50.0		84.3	70-130		
Dibromochloromethane	42			ug/l	50.0		83.9	70-130		
Dichlorodifluoromethane	38			ug/l	50.0		75.9	70-130		
Ethylbenzene	53			ug/l	50.0		106	70-130		
1,3-Dichlorobenzene	50			ug/l	50.0		99.2	70-130		
Bromomethane	42			ug/l	50.0		84.9	70-130		
Chloromethane	34			ug/l	50.0		67.3	70-130		
2-Butanone	41			ug/l	50.0		81.4	70-130		
Dibromomethane	40			ug/l	50.0		80.8	70-130		
Methylene Chloride	37			ug/l	50.0		73.9	70-130		
1,2-Dichlorobenzene	53			ug/l	50.0		107	70-130		
1,4-Dichlorobenzene	52			ug/l	50.0		103	70-130		
Styrene	55			ug/l	50.0		110	70-130		
Tetrachloroethene	41			ug/l	50.0		82.8	70-130		
Methyl t-butyl ether (MTBE)	43			ug/l	50.0		85.7	70-130		

Page 38 of 42

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B0D0107 - Purge-Trap (Continued)									
LCS (B0D0107-BS1)	,				Prepared 8	& Analyzed: 0	4/02/20			
Toluene	41			ug/l	50.0	a / iiidi / Ledi o	82.5	70-130		
trans-1,2-Dichloroethene	38			ug/l	50.0		75.5	70-130		
	44			-	50.0		88.8	70-130		
trans-1,3-Dichloropropene				ug/l						
Trichloroethene	37			ug/l	50.0		74.0	70-130		
Trichlorofluoromethane	43			ug/l	50.0		86.1	70-130		
Vinyl Chloride	39			ug/l	50.0		78.9	70-130		
Surrogate: Toluene-d8			45.2	ug/l	50.0		90.5	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.7	ug/l	50.0		99.4	70-130		
Surrogate: 4-Bromofluorobenzene			47.8	ug/l	50.0		95.5	70-130		
LCS Dup (B0D0107-BSD1)					Prepared 8	& Analyzed: 0	4/02/20			
1,1,1,2-Tetrachloroethane	50			ug/l	50.0	,	101	70-130	0.238	200
1,1,1-Trichloroethane	42			ug/l	50.0		83.3	70-130	0.264	200
1,1,2,2-Tetrachloroethane	49			ug/l	50.0		97.5	70-130	4.37	200
1,1,2-Trichloroethane	40			ug/l	50.0		80.5	70-130	0.644	200
1,1-Dichloroethane	40			ug/l	50.0		79.4	70-130	3.88	200
1,1-Dichloroethene	38			-	50.0		75.1	70-130	3.02	200
1,1-Dichloropropene	30 44			ug/l	50.0		75.1 87.7	70-130	0.569	200
	44 44			ug/l	50.0		87.7 87.3	70-130 70-130	4.48	200
1,2,3-Trichloropropane				ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	50			ug/l	50.0		99.7	70-130	3.62	200
1,2-Dibromoethane (EDB)	40			ug/l	50.0		79.8	70-130	1.49	200
1,2-Dichloroethane	41			ug/l	50.0		81.1	70-130	2.27	200
1,2-Dichloropropane	41			ug/l	50.0		81.9	70-130	0.0976	200
1,3-Dichloropropane	41			ug/l	50.0		81.2	70-130	0.834	200
2,2-Dichloropropane	55			ug/l	50.0		110	70-130	10.1	200
2-Hexanone	41			ug/l	50.0		83.0	70-130	6.89	200
4-Methyl-2-pentanone	41			ug/l	50.0		82.0	70-130	1.86	200
Acetone	34			ug/l	50.0		68.0	70-130	0.0294	200
Benzene	41			ug/l	50.0		81.5	70-130	0.245	200
Bromochloromethane	41			ug/l	50.0		82.2	70-130	0.683	200
Bromodichloromethane	40			ug/l	50.0		80.7	70-130	0.149	200
Bromoform	50			ug/l	50.0		100	70-130	1.80	200
Carbon Disulfide	41			ug/l	50.0		81.0	70-130	2.75	200
Carbon Tetrachloride	42			ug/l	50.0		84.2	70-130	0.572	200
Chlorobenzene	48			ug/l	50.0		96.5	70-130	1.50	200
Chloroethane	45			ug/l	50.0		90.9	70-130	12.6	200
Chloroform	39			ug/l	50.0		79.0	70-130	0.832	200
cis-1,2-Dichloroethene	45			-	50.0		90.8	70-130	5.80	200
·	42			ug/l			84.8	70-130		
cis-1,3-Dichloropropene				ug/l	50.0				0.544	200
Dibromochloromethane	41			ug/l	50.0		82.3	70-130	1.97	200
Dichlorodifluoromethane	40			ug/l	50.0		80.4	70-130	5.86	200
Ethylbenzene	52			ug/l	50.0		105	70-130	0.684	200
1,3-Dichlorobenzene	49			ug/l	50.0		97.2	70-130	2.00	200
Bromomethane	49			ug/l	50.0		98.0	70-130	14.3	200
Chloromethane	38			ug/l	50.0		76.3	70-130	12.5	200
2-Butanone	42			ug/l	50.0		84.9	70-130	4.14	200
Dibromomethane	40			ug/l	50.0		80.4	70-130	0.521	200
Methylene Chloride	37			ug/l	50.0		73.4	70-130	0.760	200
1,2-Dichlorobenzene	53			ug/l	50.0		107	70-130	0.0187	200
1,4-Dichlorobenzene	52			ug/l	50.0		104	70-130	1.00	200
Styrene	54			ug/l	50.0		107	70-130	2.30	200
Tetrachloroethene	42			ug/l	50.0		83.1	70-130	0.313	200
Methyl t-butyl ether (MTBE)	42			ug/l	50.0		83.4	70-130	2.79	200
Toluene	41			ug/l	50.0		82.1	70-130	0.511	200
trans-1,2-Dichloroethene	35			ug/l	50.0		70.6	70-130	6.71	200
trans-1,3-Dichloropropene	45			ug/l	50.0		89.2	70-130	0.472	200
a and 1/3 Diction optopolic	73			ug/i	50.0		05.2	, 5 130	J. 1/ Z	200

Page 39 of 42

Quality Control (Continued) **Volatile Organic Compounds (Continued)** %REC RPD Reporting Spike Source Analyte Result Qual Limit Units Level Result %REC Limits RPD Limit Batch: B0D0107 - Purge-Trap (Continued) LCS Dup (B0D0107-BSD1) Prepared & Analyzed: 04/02/20 Trichlorofluoromethane 41 ug/l 50.0 81.6 70-130 5.44 200 Vinyl Chloride 42 ug/l 50.0 83.2 70-130 5.21 200 Surrogate: Toluene-d8 45.5 ug/l *50.0* 91.1 70-130 49.5 ug/l 50.0 Surrogate: 1,2-Dichloroethane-d4 99.1 70-130

ug/l

50.0

93.5

70-130

46.8

Surrogate: 4-Bromofluorobenzene

Notes and Definitions

<u>Item</u>	<u>Definition</u>
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC.

West Warwick, RI 02893 59 Greenhill Street

-888-863-8522

CHAIN OF CUSTODY RECORD

REMARKS Special Instructions: List Specific Detection Limif Requirements: spestos, UCMRs, Percharate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH Appendix A M. Lasts A. Laboratory Remarks: Temp. received. Cooled □ × × X × × × × ずん 312/10 1315 2/24 2/12/2 CONTAINERS 1 500mt 2×40ml Date/Time Š P о⊢тшс ა0−1 2 ∢α⊃mo⊃« 94139.24 Tiventon landfill Quentraly Monitoring Received by (Signature) Received by (Signature) REPORT TO M Flynd parceapien , abar on porcept com . **Netlab subcontracts the following tests. Radiologicals, Radon, SAMPLE I.D. 3/27/20 1256 3/24/20 | 1635 3/2/2/3/ 5 - MQ 0 W - 1 91-00 ロークロ 01,-13 L-00 PROJECT NAME/LOCATION Pare Conocation inquished by (Signature) ೧೦≥೯ Stacher Sampled by: (Signature) 1535 1245 1320 (45 1430 9 1635 TIME 3/20/20 1100 PROJ. NO. DATE

ATTACHMENT 2

Field Sampling Data Sheets, Surface Water and Observation Water Logs

PROJECT NAME: TIVERTON LANDFILL DATE: 3/26/2020 PARE PROJECT NO.: 94139.01 WEATHER: Sunny, ~40°F

FIELD TESTING RESULTS:

SURFACE WATER LOCATION: SW-1

READING 1

 pH:
 6.59
 pH UNITS

 SPEC. COND:
 0.383
 mS/cm

 TEMPERATURE:
 5.4
 °C

SURFACE WATER LOCATION: SW-2

READING 1

 pH:
 5.73
 pH UNITS

 SPEC. COND:
 0.297
 mS/cm

 TEMPERATURE:
 4.8
 °C

SURFACE WATER LOCATION: SW-3

READING 1

 pH:
 6.80
 pH UNITS

 SPEC. COND:
 0.322
 mS/cm

 TEMPERATURE:
 5.5
 °C

NOTES:

All surface water samples were clear with a brownish tinge.

PROJECT NAME:	TIVERTON LANDFILL	DATE:	3/26/2020
PROJECT NO.:	94139.24	WEATHER:	Sunny, ~40°F

WELL ID: OW-9 DIAMETER (INCHES):

PURGE DATA

WELL DEPTH: MEASURE POINT: Top of Casing 15.54 feet PURGE VOLUME (GAL): 0.6 gallons PURGE RATE (GPM): 0.1 +/-**PURGER TYPE:** Peristaltic pump **ELAPSED TIME (MIN):** 20 +/-

WATER LEVEL DATA

DEPTH: 12.2 feet **ELEVATION:** See Site Plan

MEASURE POINT: Water Level Indicator Top of Casing **DEVICE:**

FIELD TESTING RESULTS

1035 1040 1042 1045 1050 Time: 1033 5.92 5.66 5.67 5.65 pH: 6.20 5.80 Sp.Con. (mS/cm): 0.24 0.11 0.10 0.16 0.09 0.09 9.40 9.90 9.50 9.50 9.50 9.50

Temp (°C):

NOTES:

Sample noted as generally clear and low in turbidity based on visual observations.

Sample collected at 1100 hours.

Methane Reading (% LEL): 0

PROJECT NAME: PROJECT NO.:	TIVERTO 94139.24	FILL	DATE: WEATHE	ER:			/2020 , ~40°F			
WELL ID:	OW-12				DIAMETER (INCHES):			2		
PURGE DATA										
WELL DEPTH: PURGE VOLUME (C PURGER TYPE:	MEASURE POINT: Top of Casing PURGE RATE (GPM): 0.1 +/- ELAPSED TIME (MIN): 20 +/-									
WATER LEVEL DA	<u>ΓΑ</u>									
DEPTH: MEASURE POINT:	OINT: 2.7 feet Top of Casing				ELEVATION: See Sit Water L			ite Plan Level Indicator		
FIELD TESTING RE	SULTS									
Time:	1127	1131	1138	1142						
pH:	5.92	5.99	6.00	6.01						
Sp.Con. (mS/cm):	0.41	0.37	0.37	0.37						
Temp (°C):	11.20	9.90	9.70	9.70						
NOTES: Sample noted as generally clear and low in turbidity based on visual observations.										
Sample collected at		rs.								
Methane Reading (%	6 LEL): 0									

_	IVERTO 4139.24	N LANDF	FILL		DATE: WEATHE	ER:			2020 ~40°F	-	
WELL ID:	OW-13				DIAMETER (INCHES):			2	2	-	
PURGE DATA											
WELL DEPTH: PURGE VOLUME (GA PURGER TYPE:		MEASURE POINT: Top of Casing PURGE RATE (GPM): 0.1 +/- ELAPSED TIME (MIN): 20 +/-									
WATER LEVEL DATA											
DEPTH: MEASURE POINT:	B POINT: 3.8 feet Top of Casing				ELEVATION: See Site Water L			te Plan Level Indicator			
FIELD TESTING RES	SULTS										
Time:	1628	1633	1637	1642			1			I	
pH:	6.46	6.52	6.54	6.55							
Sp.Con. (mS/cm):	1.13	0.99	1.02	1.01							
Temp (°C):	9.70	9.10	8.90	9.00							
NOTES:											
Sample noted as generally clear and low in turbidity based on visual observations.											
Sample collected at 1645 hours.											
Methane Reading (%											

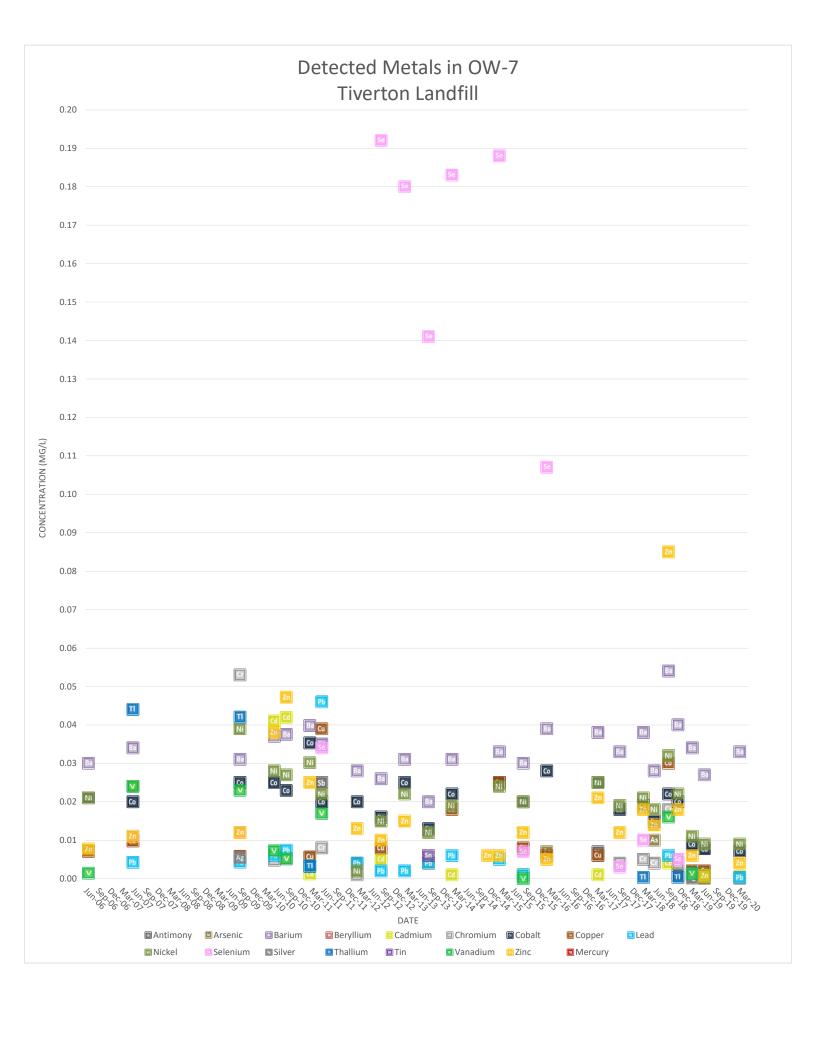
PROJECT NAME: PROJECT NO.:	TIVERTO 94139.24	FILL	DATE: WEATHE	ER:		3/26/2020 Sunny, ~40°F					
WELL ID:	OW-14				DIAMETE	ER (INCH	ES):	2			
PURGE DATA											
WELL DEPTH: PURGE VOLUME (C PURGER TYPE:	RGE VOLUME (GAL): 1.2 gallons					MEASURE POINT: Top of Casing PURGE RATE (GPM): 0.1 +/- ELAPSED TIME (MIN): 15 +/-					
WATER LEVEL DATA											
DEPTH: MEASURE POINT:						See Site Water Le	e Plan _evel Indicator				
FIELD TESTING RE	SULTS										
Time:	1231	1237	1243								
pH:	6.49	6.50	6.51								
Sp.Con. (mS/cm):	1.20	1.29	1.29								
Temp (°C):	10.80	10.60	10.40								
NOTES:											
Sample noted as slightly cloudy with a reddish tinge based on visual observations.											
Sample collected at	1245 hou	rs.									

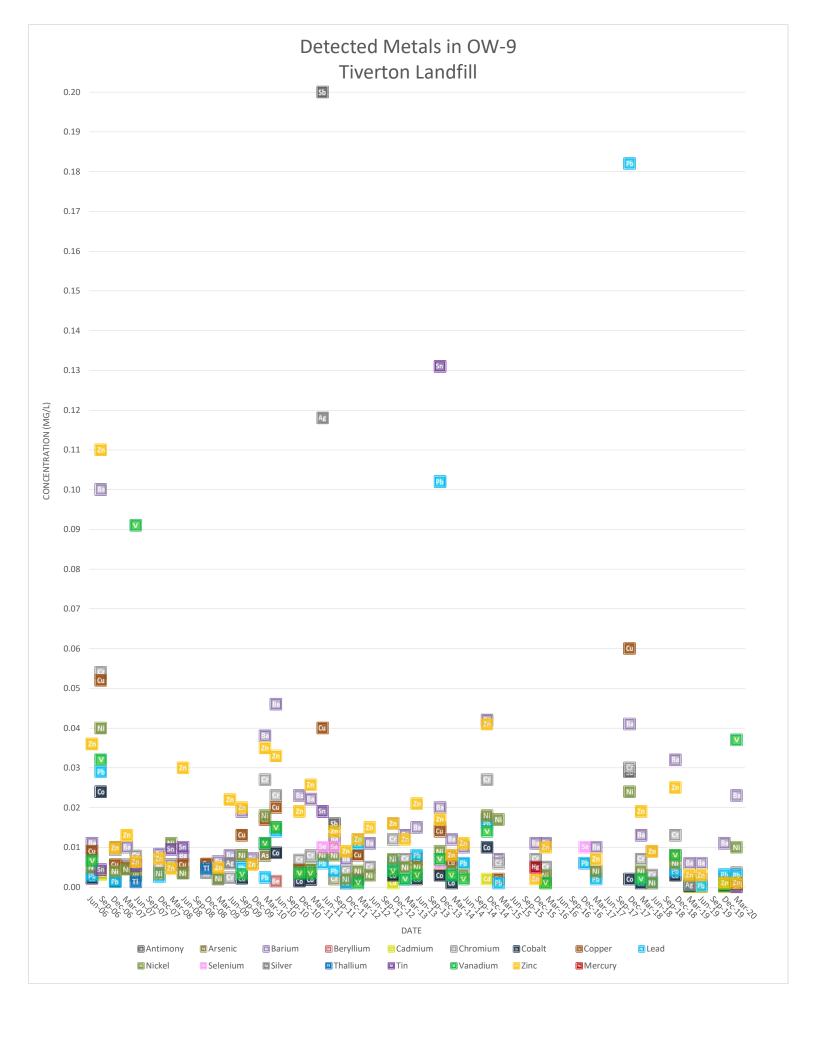
Methane Reading (% LEL): 0

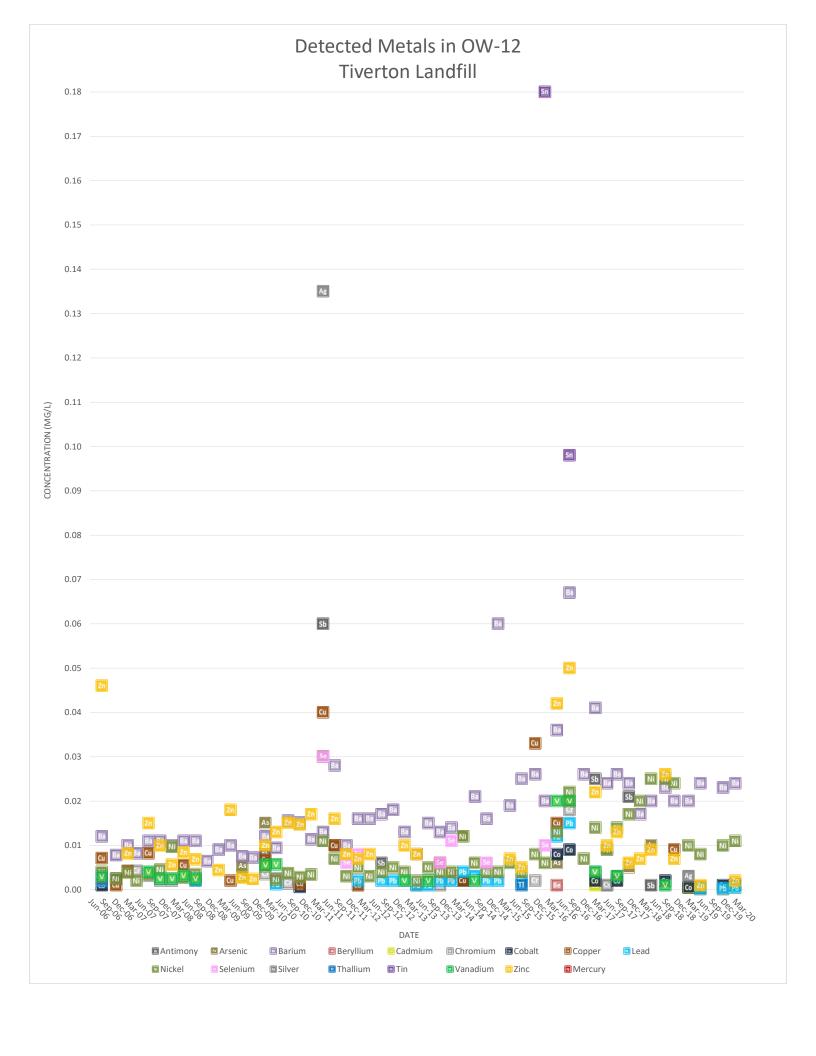
PROJECT NAME: PROJECT NO.:	TIVERTON LANDFILL 94139.24			- -	DATE: WEATHE	ER:		3/26/2020 Sunny, ~40°F		
WELL ID:	OW-15				DIAMETE	ER (INCI	HES):	2		
PURGE DATA										
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE: 16.48 feet 2.0 gallons Peristaltic pump			-	MEASURE POINT: Top of Casing PURGE RATE (GPM): 0.1 +/- ELAPSED TIME (MIN): 20 +/-						
WATER LEVEL DATA										
DEPTH: 6.7 feet MEASURE POINT: Top of Casing			-	ELEVATION: See Site Plan DEVICE: Water Level Indicator						
FIELD TESTING RE	SULTS									
Time: pH: Sp.Con. (mS/cm): Temp (°C):	1304 6.61 1.15 13.60	1312 6.60 1.16 12.20	1317 6.62 1.15 12.10							
NOTES:										
Sample noted as generally clear and low in turbidity based on visual observations.										
Evidence of positive hydrostatic pressure observed audibly and visually with a "bubbling" noise and rise in										
groundwater level several inches upon opening the well. The well was allowed to settle for 10 minutes prior to regauging and the depth to water provided is the value produced upon gauging the well twice after										
allowing to settle.										
Sample collected at 1320 hours.										
Methane Reading (% LEL): 99%, Total VOCs (ppm) 2.3										

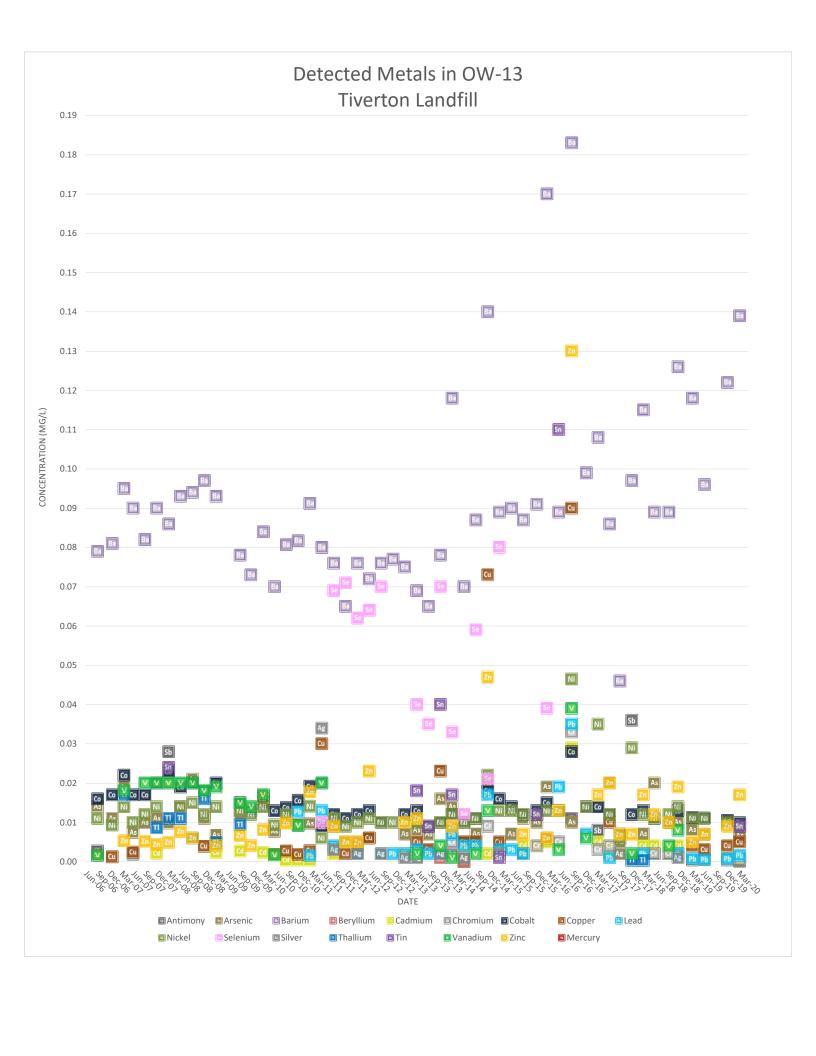
PROJECT NAME: PROJECT NO.:	TIVERTON LANDFILL 94139.24				DATE: WEATHER:			3/26/2020 Sunny, ~40°F		
WELL ID:	OW-7				DIAMETER (INCHES):			2		
PURGE DATA										
WELL DEPTH: 11.8 feet PURGE VOLUME (GAL): 2.1 gallons PURGER TYPE: Peristaltic pump					MEASUR PURGE F ELAPSEI	Casing +/- +/-				
WATER LEVEL DATA										
DEPTH: MEASURE POINT:					ELEVATION: See Site Water L			e Plan evel Indicator		
FIELD TESTING RESULTS										
Time:	1508	1512	1521	1532						
pH:	6.35	6.43	6.45	6.47						
Sp.Con. (mS/cm):	0.74	0.67	0.67	0.67						
Temp (°C):	10.30	9.00	8.80	8.60						
NOTES: Sample noted as generally clear and low in turbidity based on visual observations.										
Sample collected at 1535 hours.										
Methane Reading (%	6 LEL): 0				_				_	

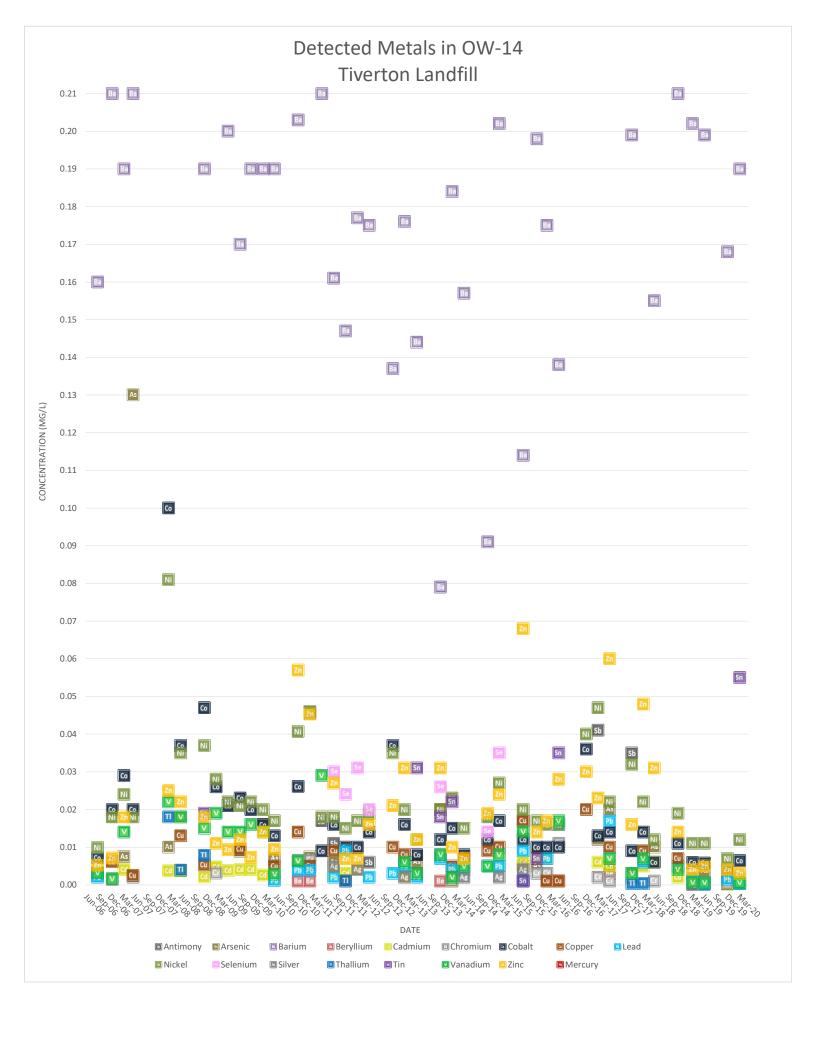
PROJECT NAME: PROJECT NO.:	TIVERTC 94139.24		FILL		DATE: WEATHE	:R:		3/26/2020 Sunny, ~40°F		
WELL ID:	OW-16				DIAMETE	ER (INCH	IES):	2		
PURGE DATA										
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE: 45.8 feet 7.3 gallons Peristaltic pump					MEASUR PURGE F ELAPSEI	RATE (GI	PM):	Top of Casing 0.3 +/- 25 +/-		
WATER LEVEL DATA										
DEPTH: 1.0 feet MEASURE POINT: Top of Casing				ELEVATION: See Site DEVICE: Water L			e Plan evel Indicator			
FIELD TESTING RESULTS										
Time:	1546	1551	1554	1558			Ι			
pH:	6.67	6.65	6.66	6.68						
Sp.Con. (mS/cm):	0.84	0.73	0.73	0.73						
Temp (°C):	11.00	11.00	11.00	10.90						
NOTES:										
Sample noted as generally clear and low in turbidity based on visual observations.										
Sample collected at 1600 hours. Approximately 5-gallons purged prior to start of field parameter testing.										

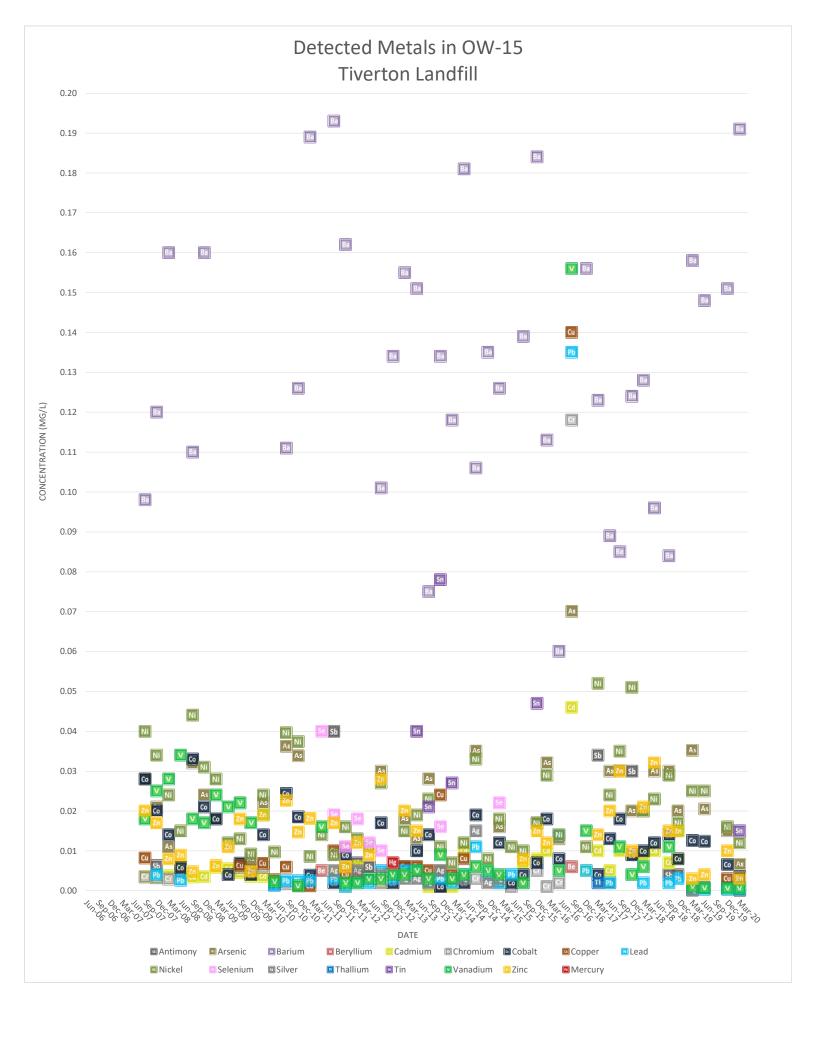

Methane Reading (% LEL): 0

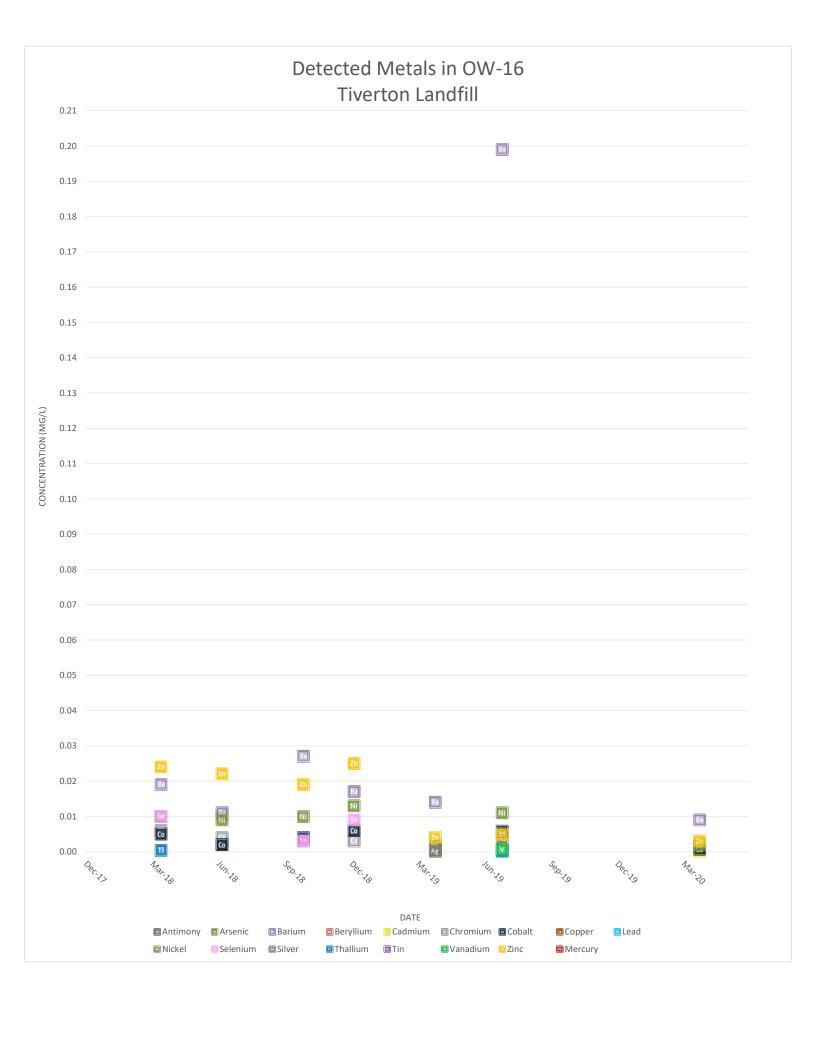

PROJECT NAME: PROJECT NO.:					DATE: WEATHER:			3/26/2020 Sunny, ~40°F		
WELL ID:	OW-17				DIAMETER (INCHES):			2		
PURGE DATA										
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE: 22.23 feet 2.7 gallons Peristaltic pump					MEASURE POINT: Top of Casing PURGE RATE (GPM): 0.1 +/- ELAPSED TIME (MIN): 30 +/-					
WATER LEVEL DATA										
DEPTH: MEASURE POINT:					ELEVATION: See Site DEVICE: Water Le			Plan evel Indicator		
FIELD TESTING RESULTS										
Time:	1405	1410	1412	1415	1417		T		l	
pH:	6.62	6.42	6.26	6.27	6.27					
Sp.Con. (mS/cm):	0.16	0.21	0.17	0.17	0.17					
Temp (°C):	11.60	9.50	9.50	9.40	9.30					
NOTES: Sample noted as generally clear and low in turbidity based on visual observations.										
Sample collected at 1430 hours. Methane Reading (% LEL): 0										
wichiane reading (7	<u> </u>									

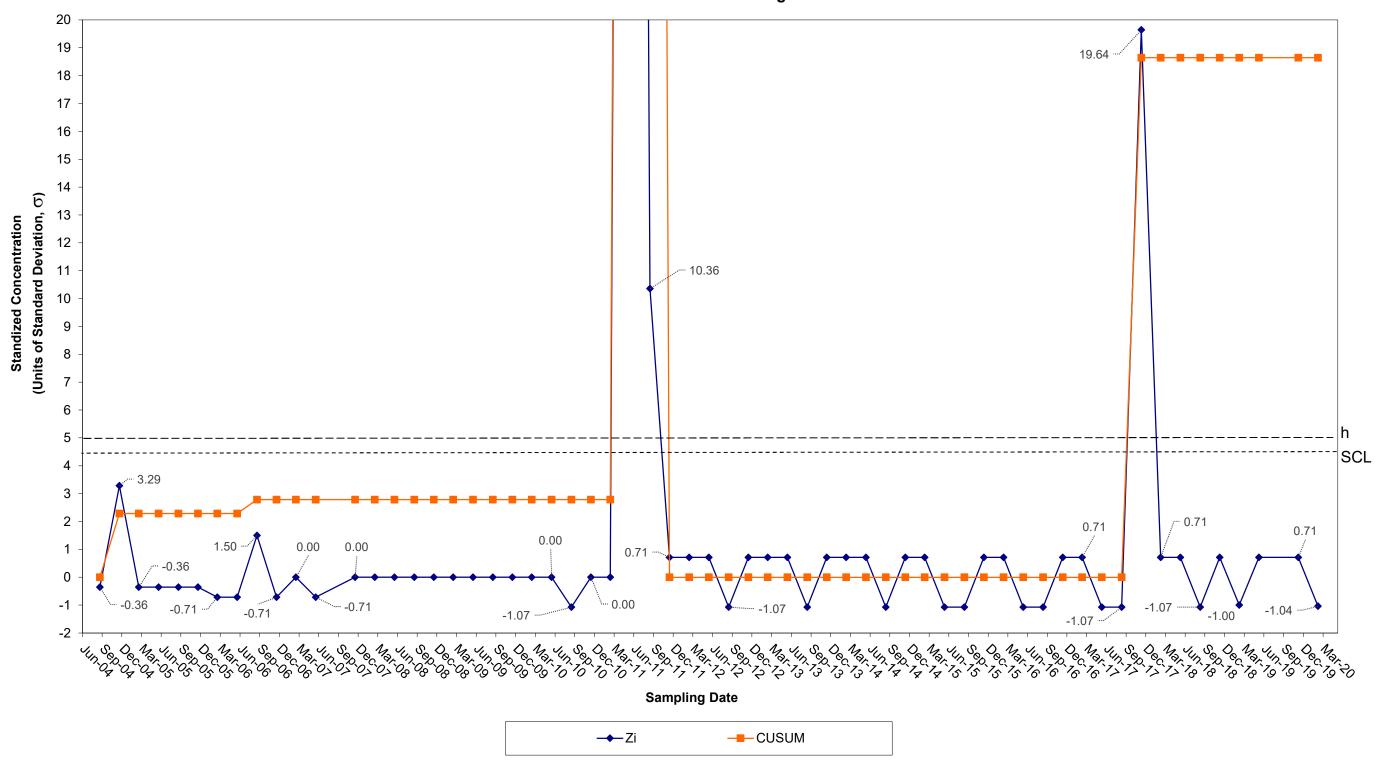

ATTACHMENT 3


Charts of Historical Inorganic Compound Detections, Observation Wells

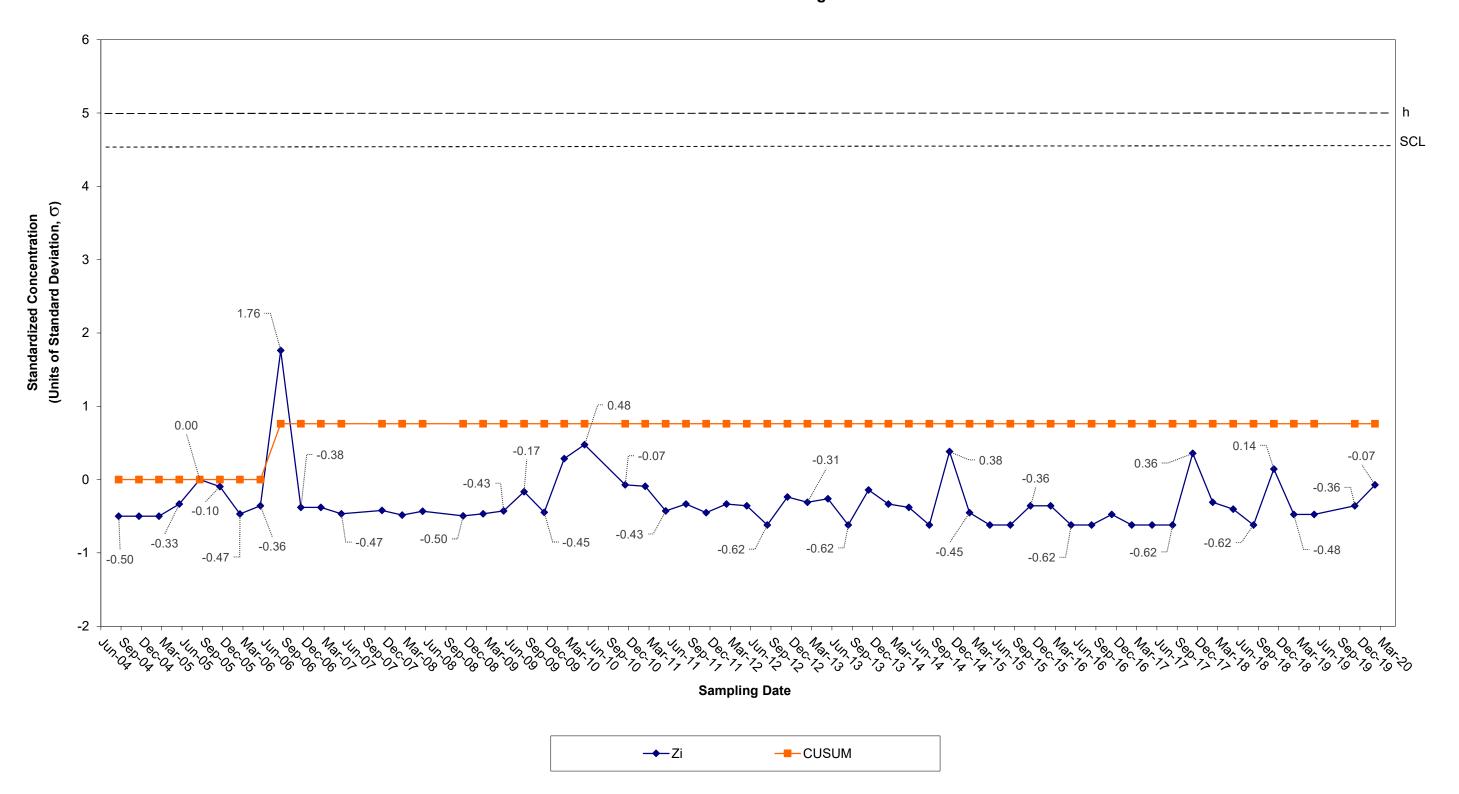


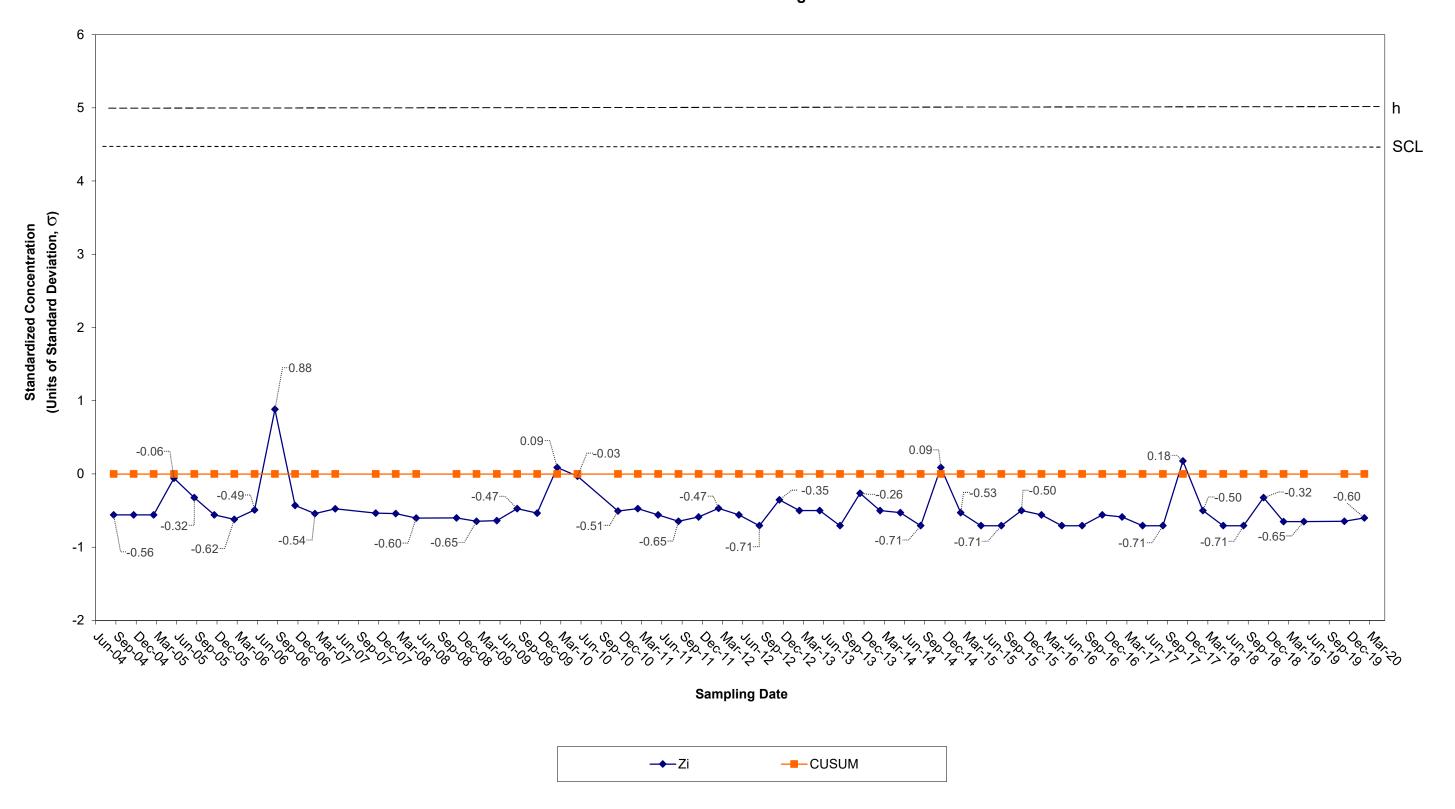


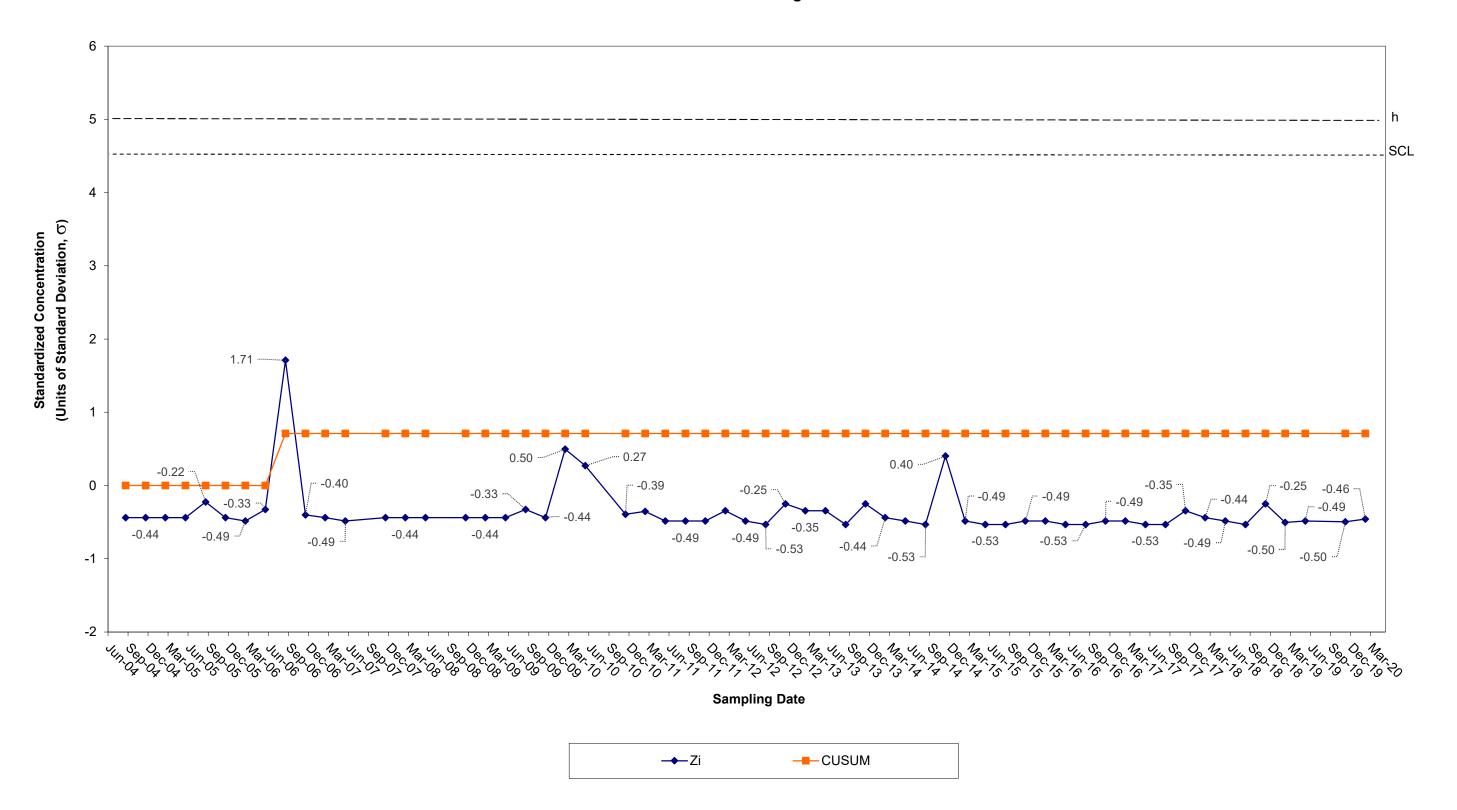


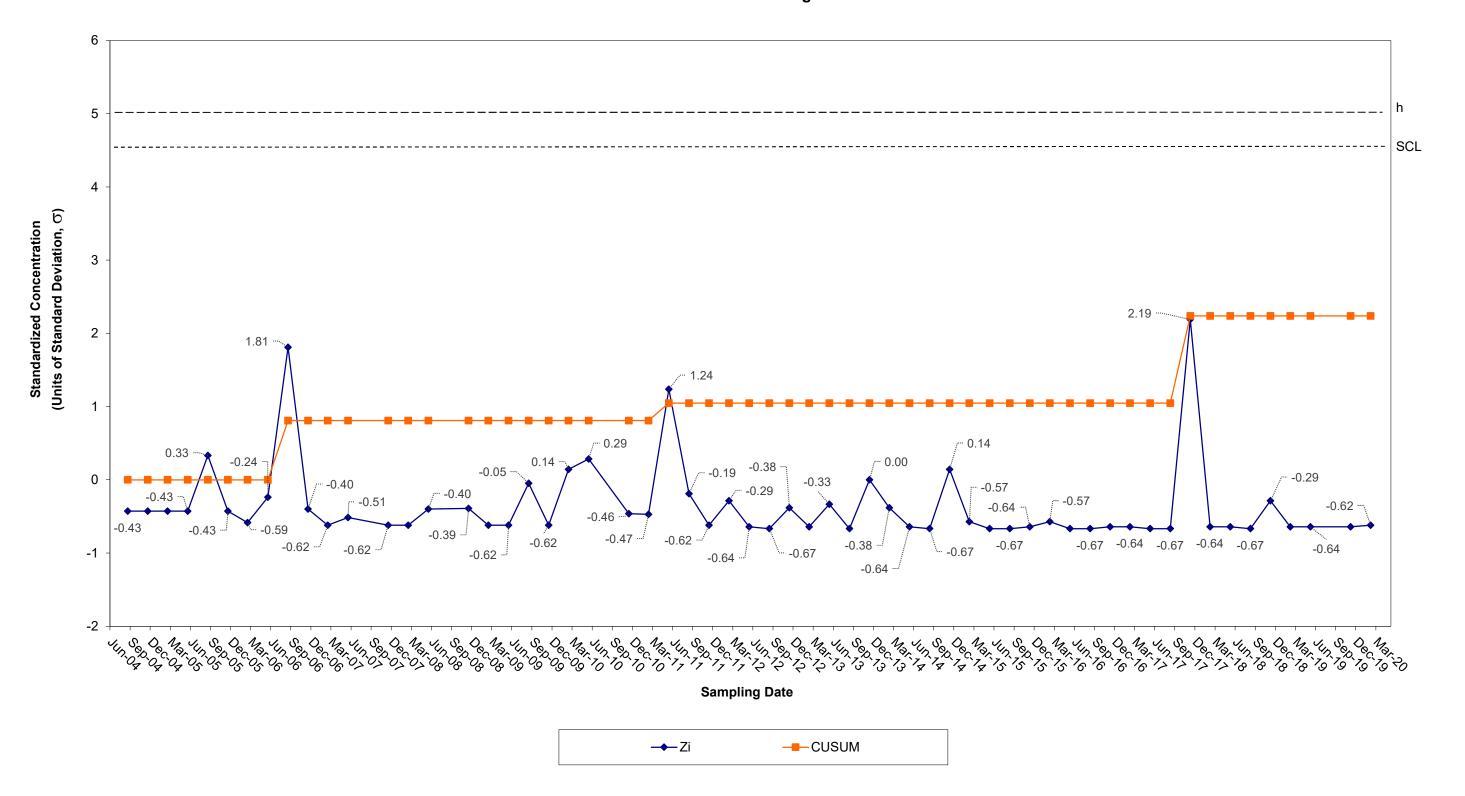


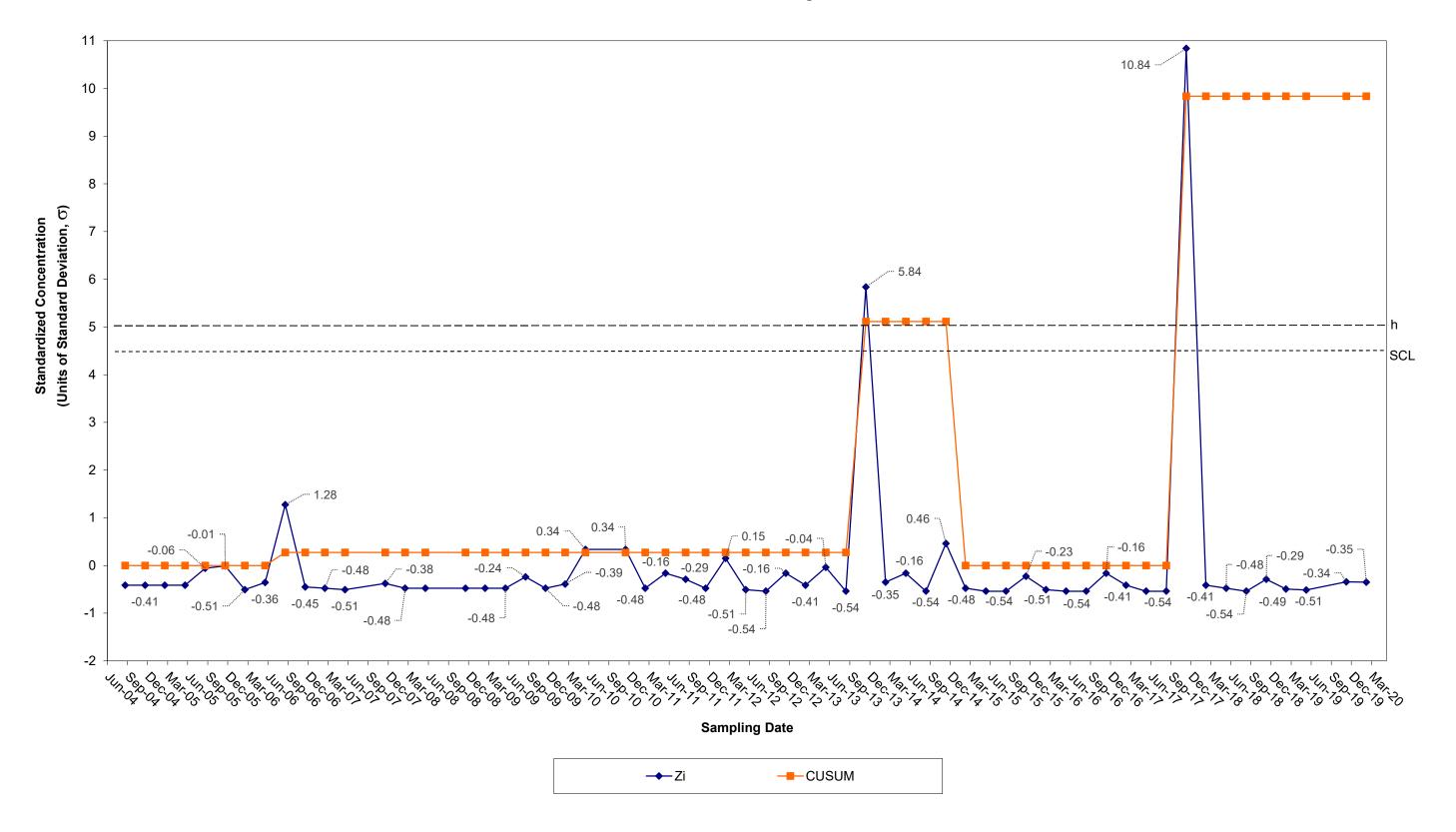
ATTACHMENT 4

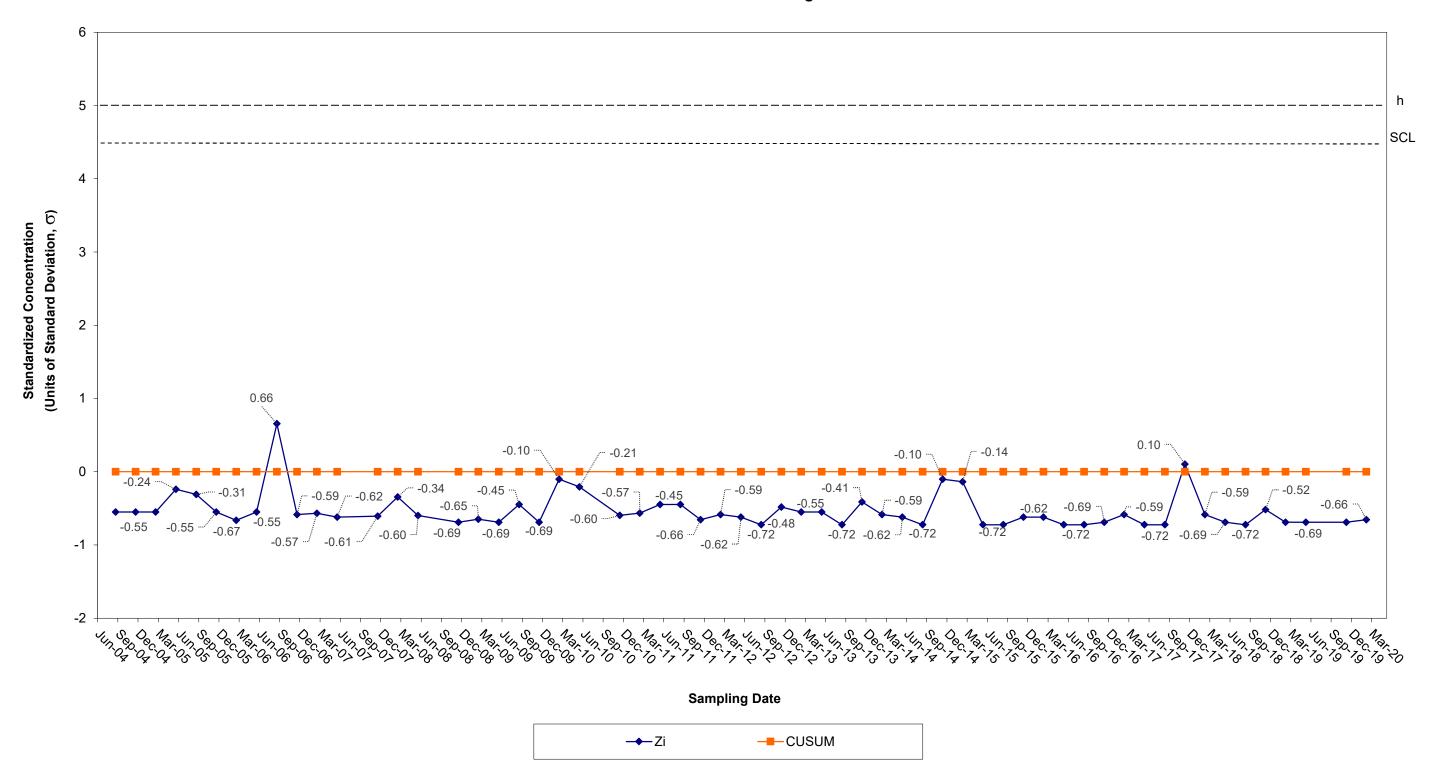

Shewhart/CUSUM Graphs for Inorganic Compounds, Observation Wells

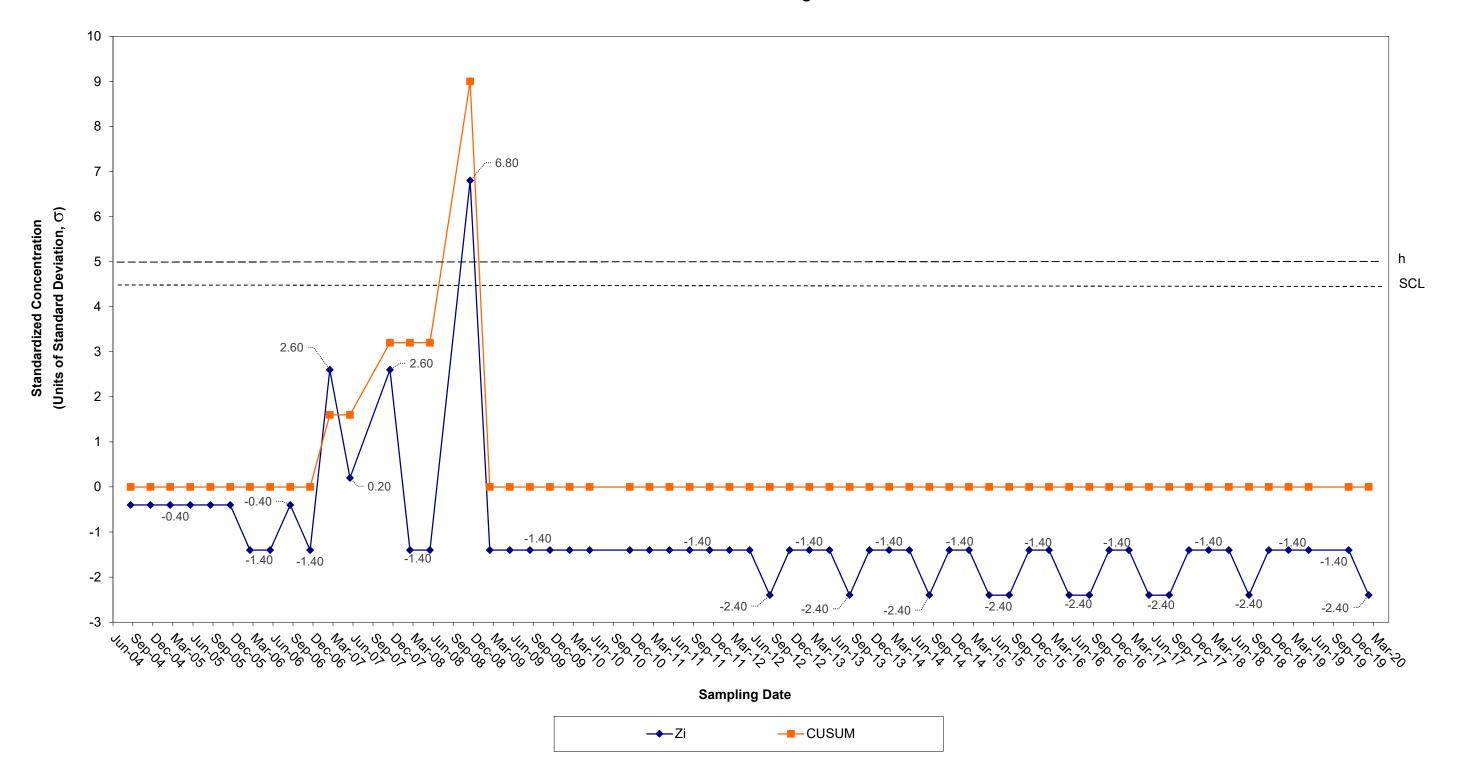

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Background Well OW-9

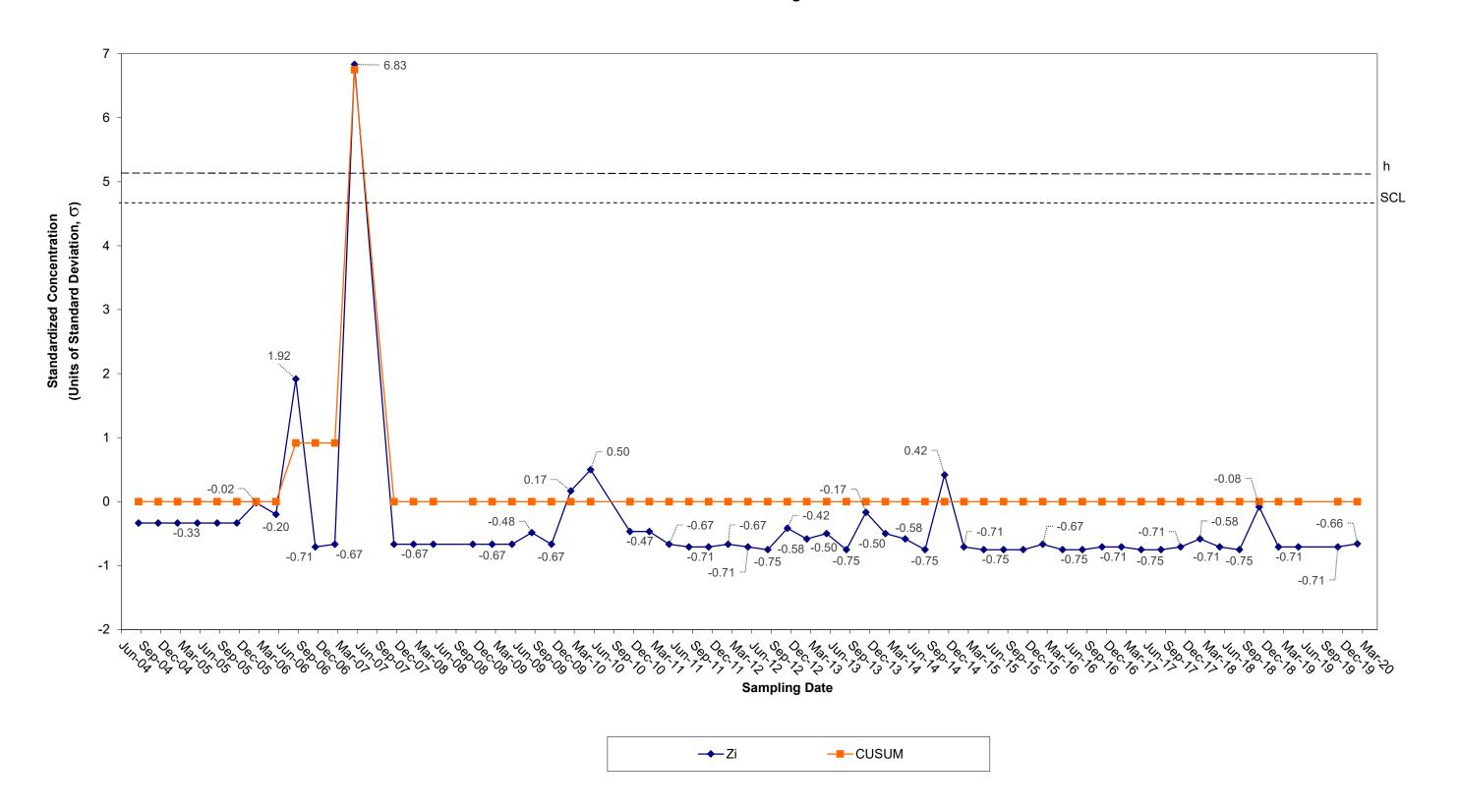

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Background Well OW-9

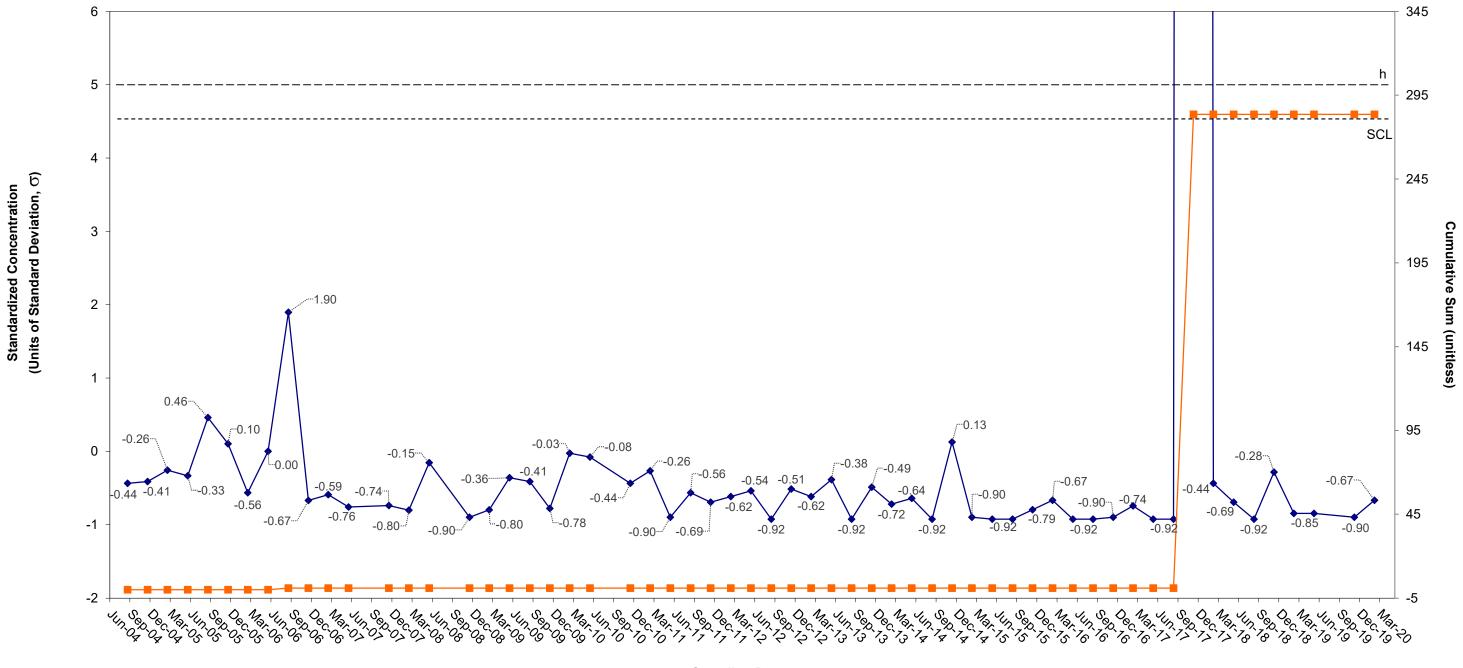

CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Background Well OW-9


CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Background Well OW-9

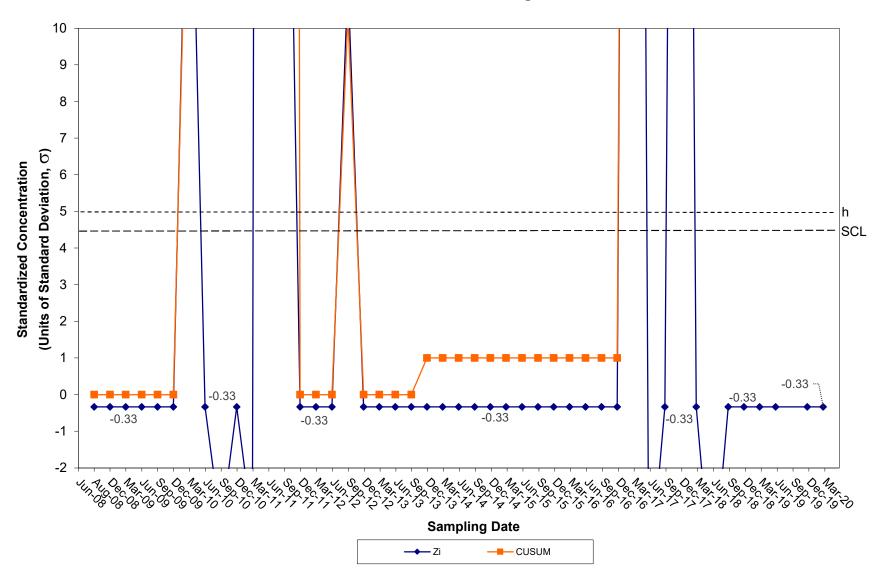

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Background Well OW-9

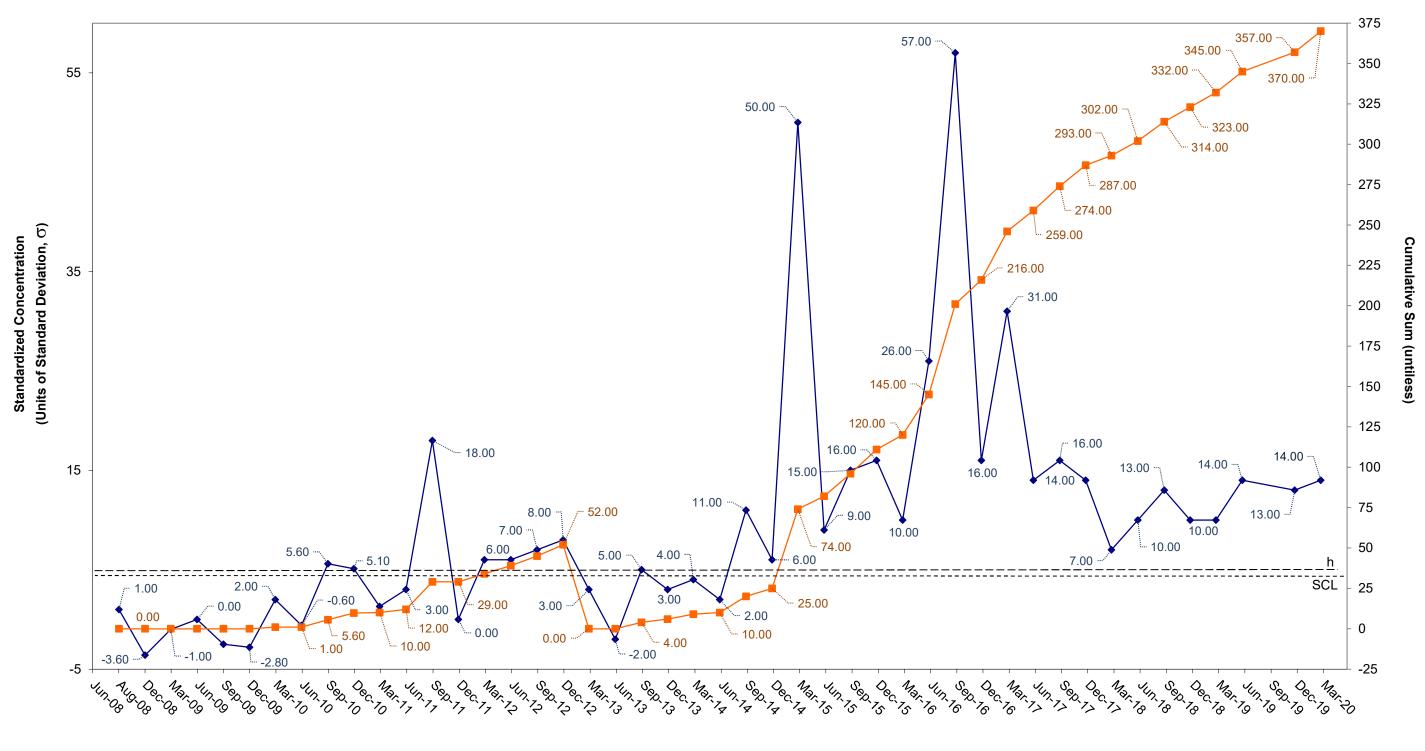

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Background Well OW-9


CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Background Well OW-9

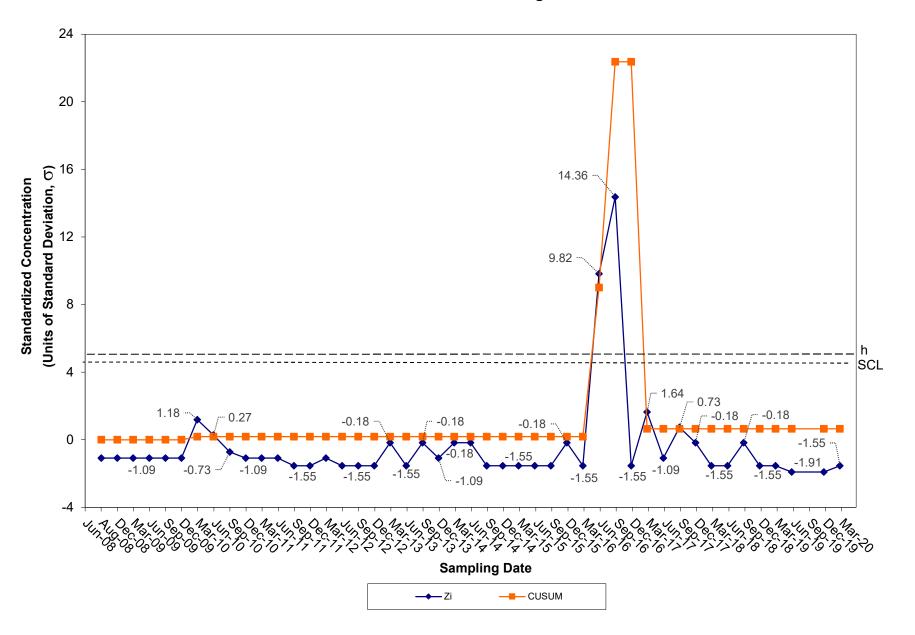

CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Background Well OW-9

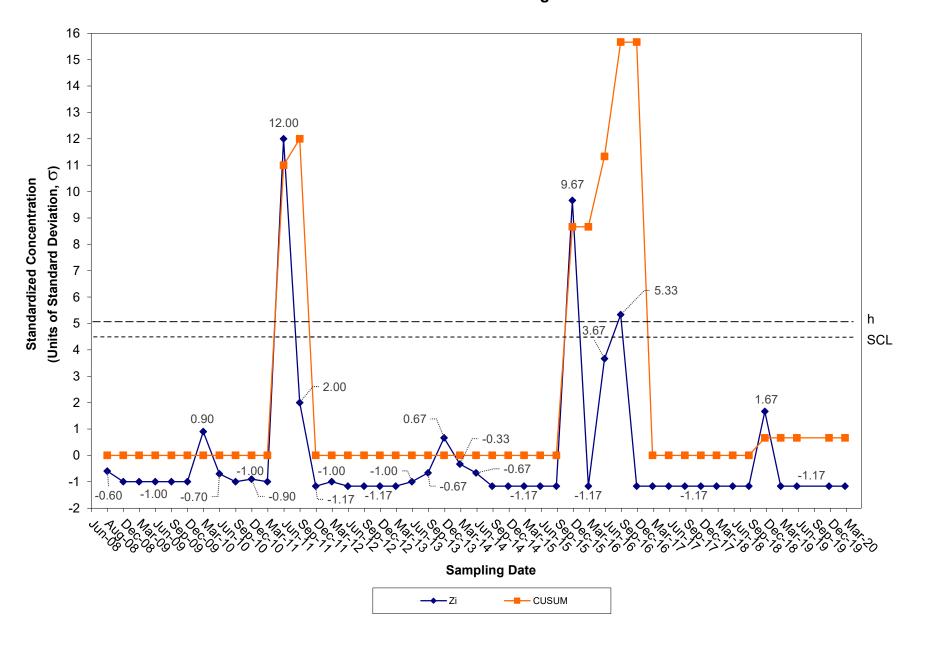
CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Background Well OW-9

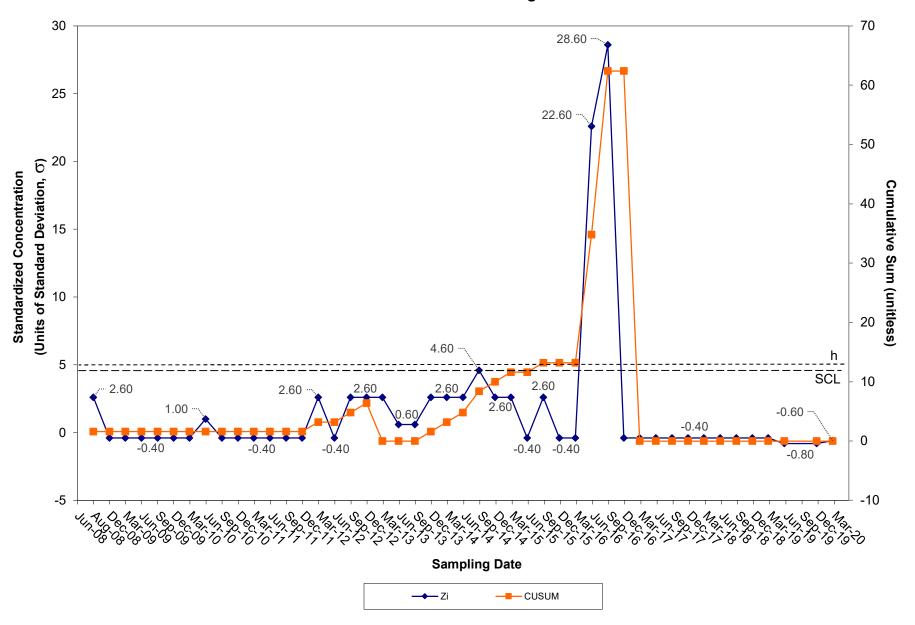

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Background Well OW-9

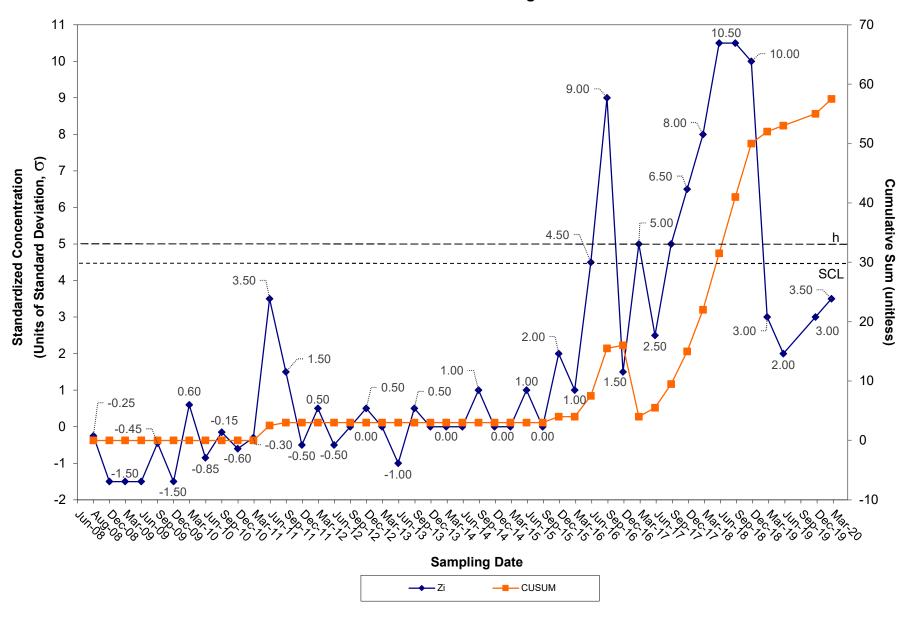

Sampling Date

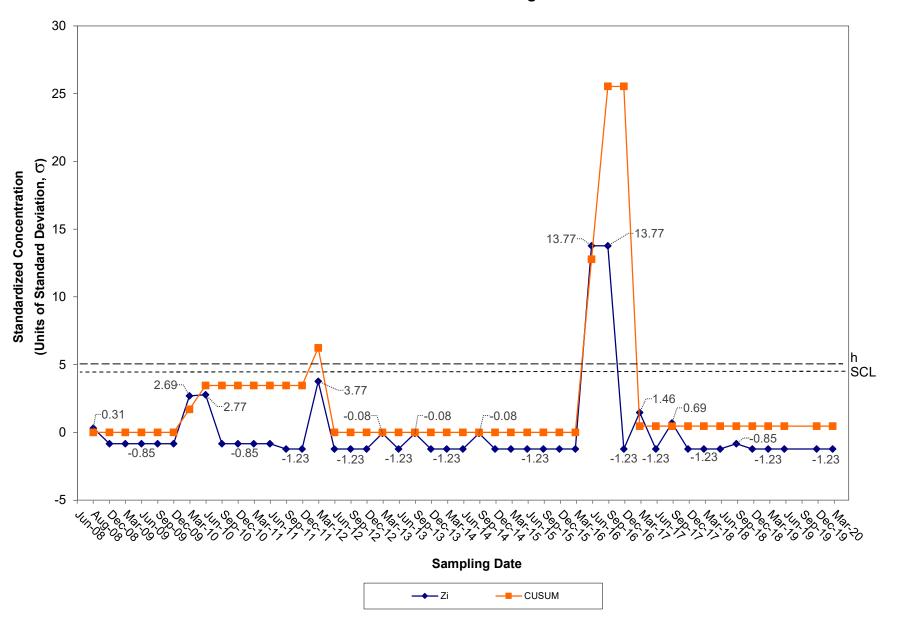
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Background Well OW-12

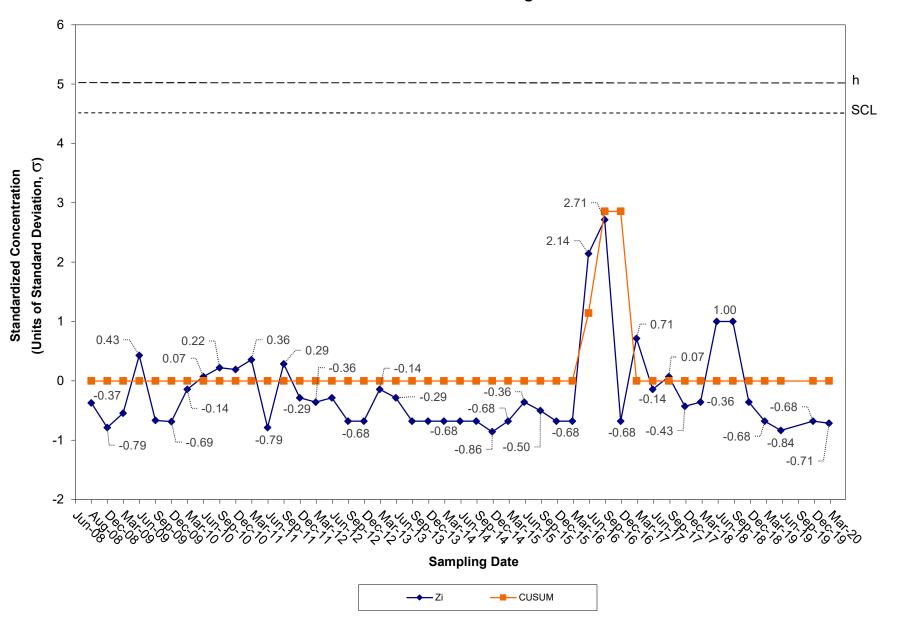

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Background Well OW-12

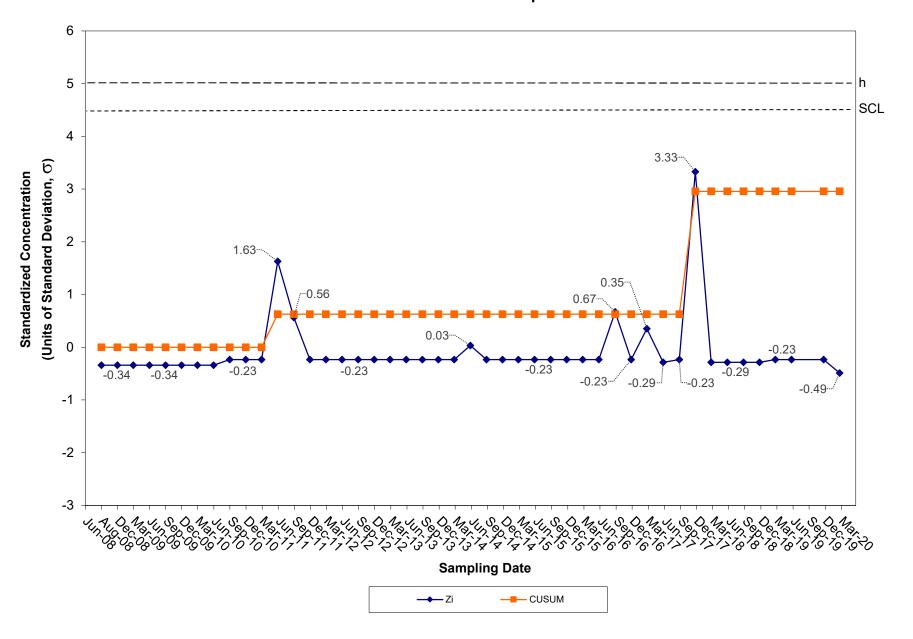


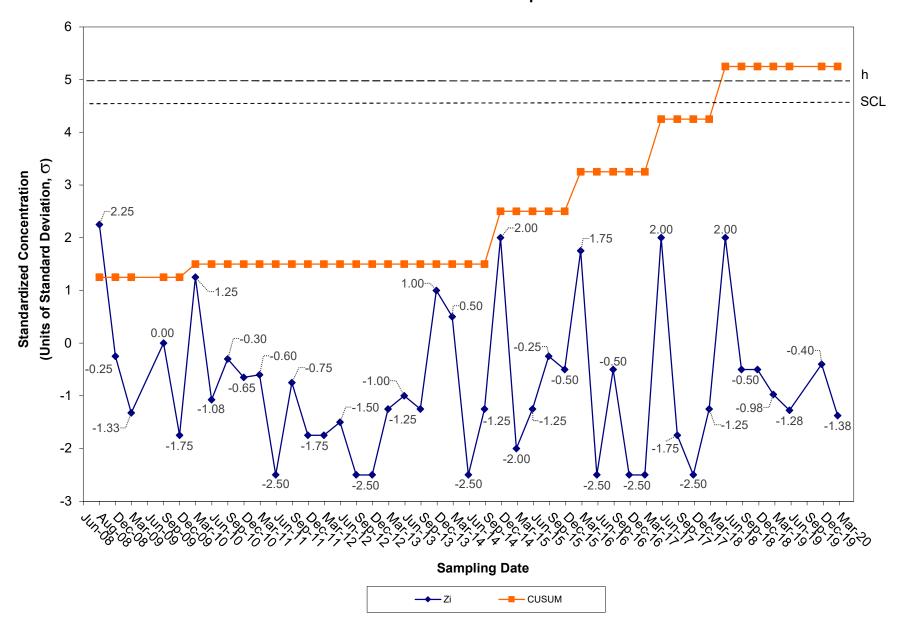

CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Background Well OW-12

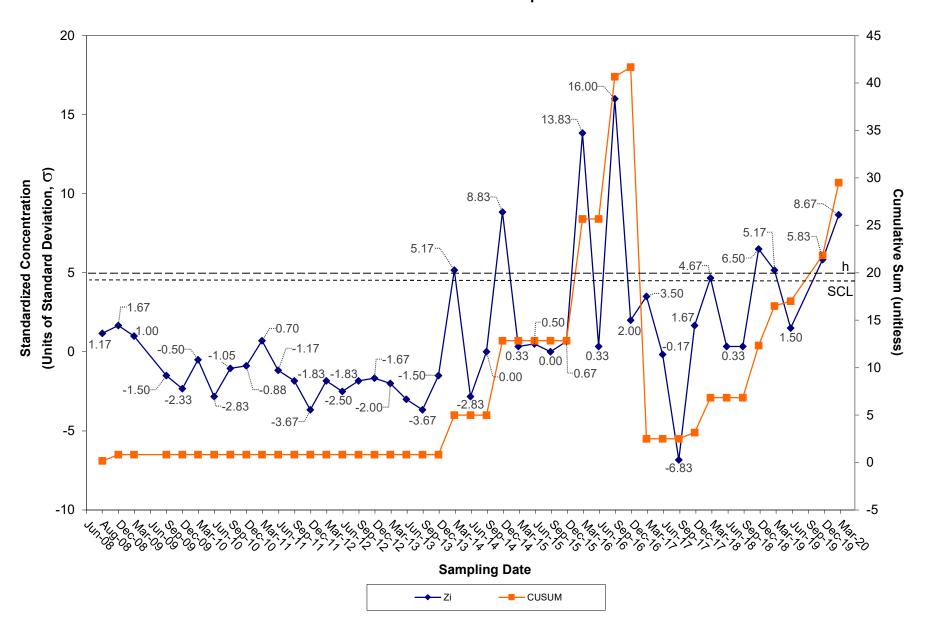

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Background Well OW-12

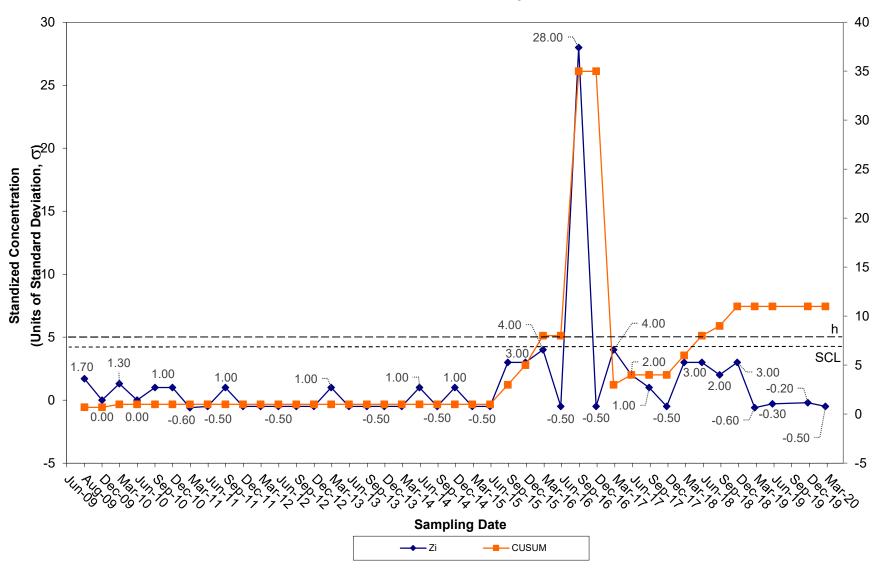

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Background Well OW-12

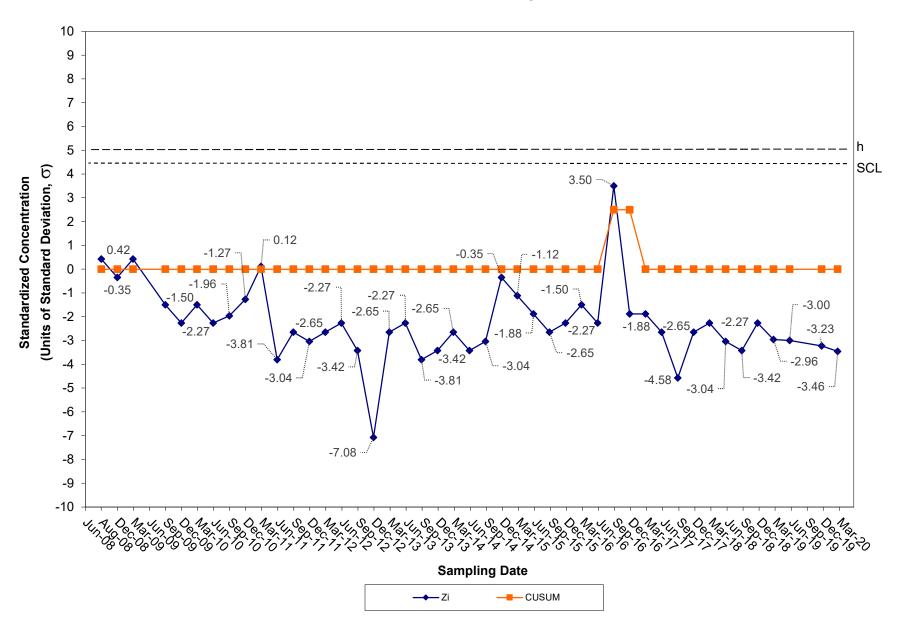

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Background Well OW-12

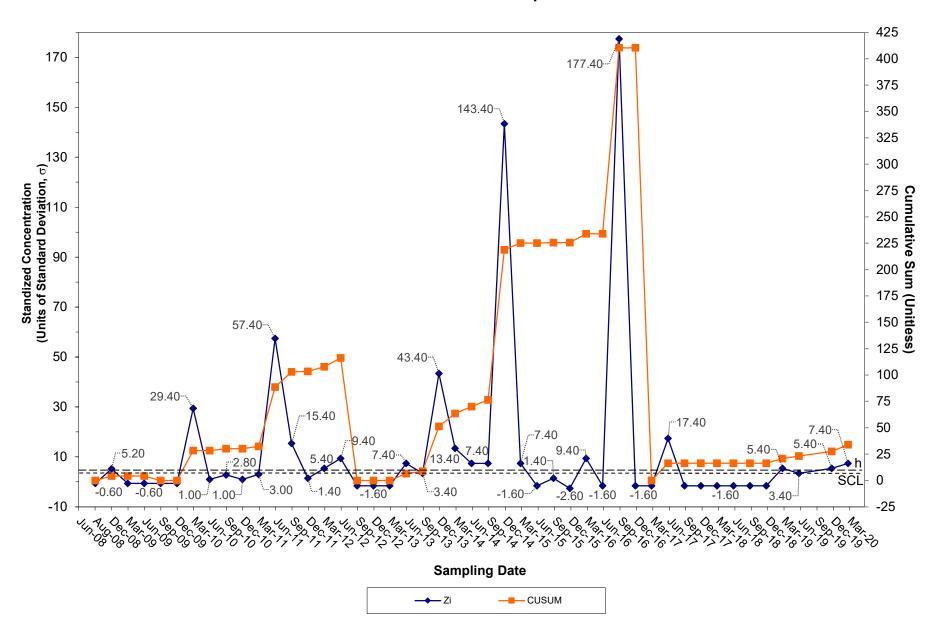

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Background Well OW-12

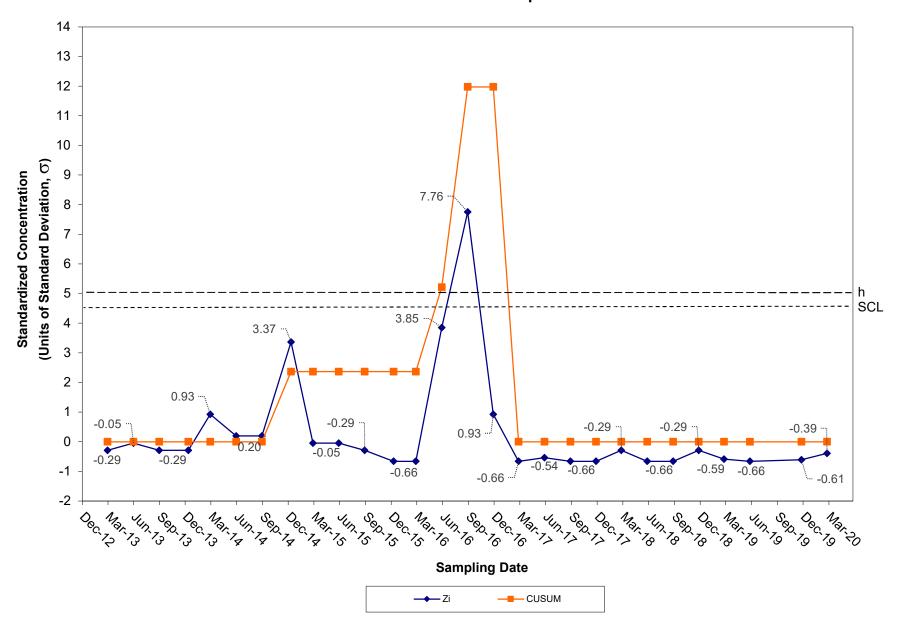

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Background Well OW-12

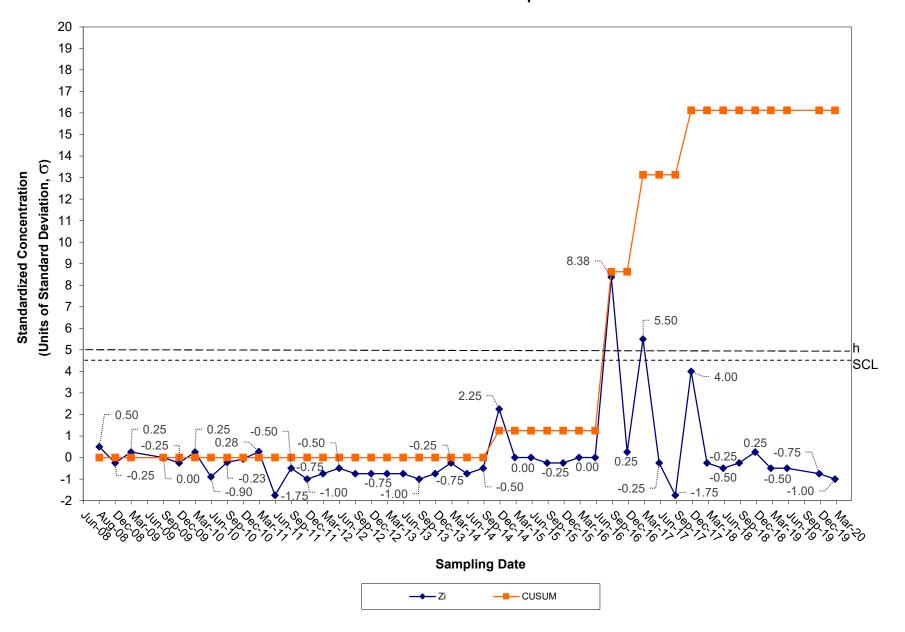

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-13

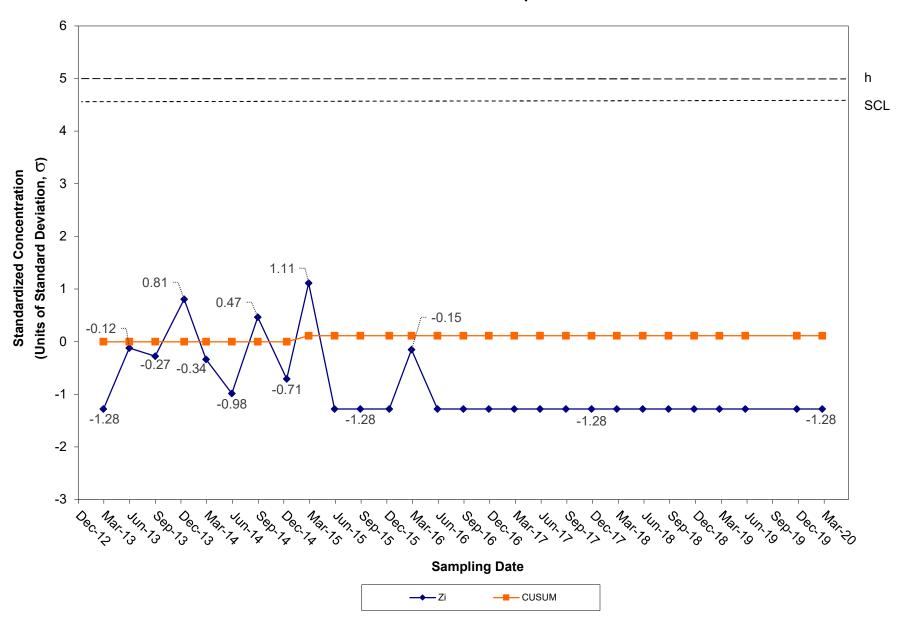

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-13

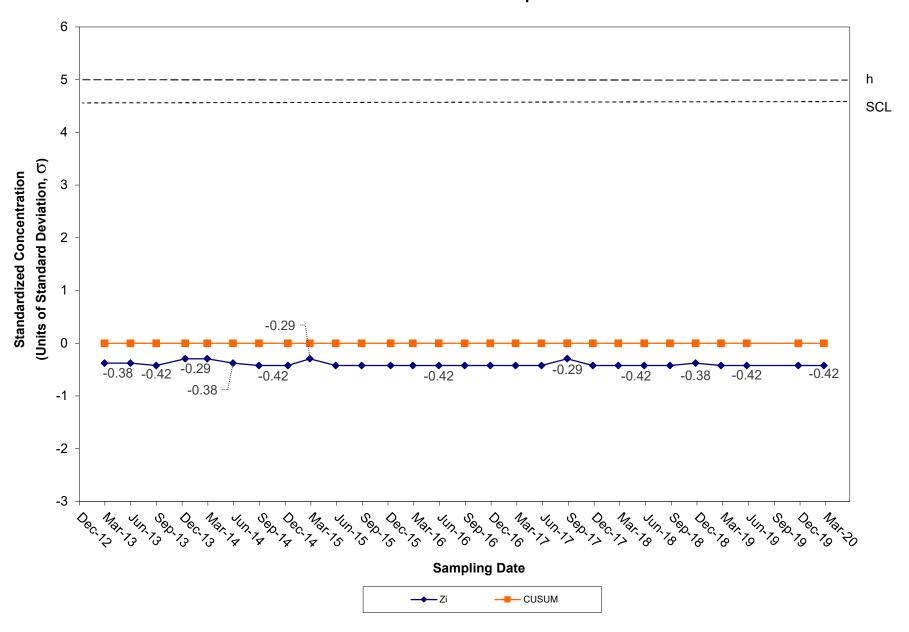

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-13

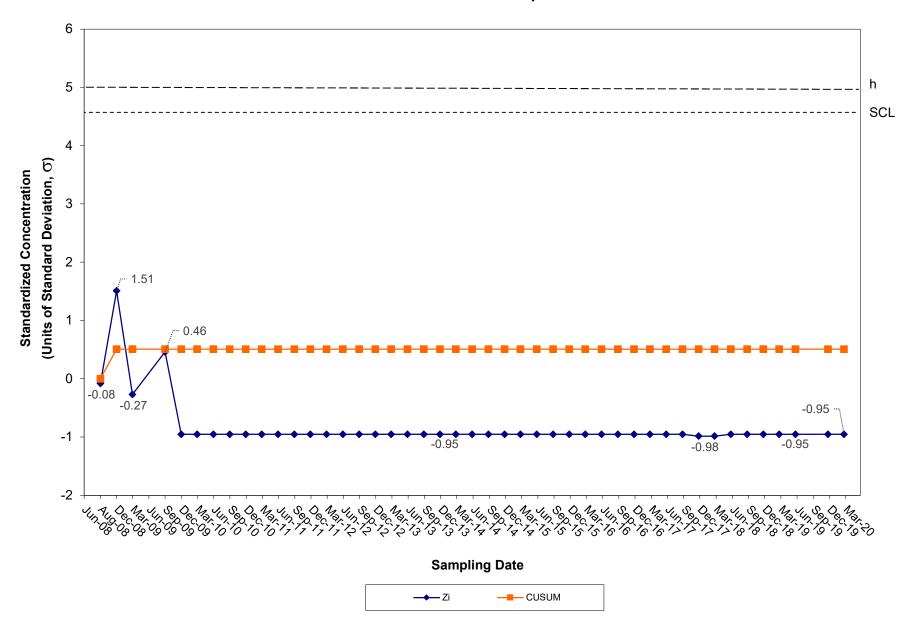

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Complaince Well OW-13

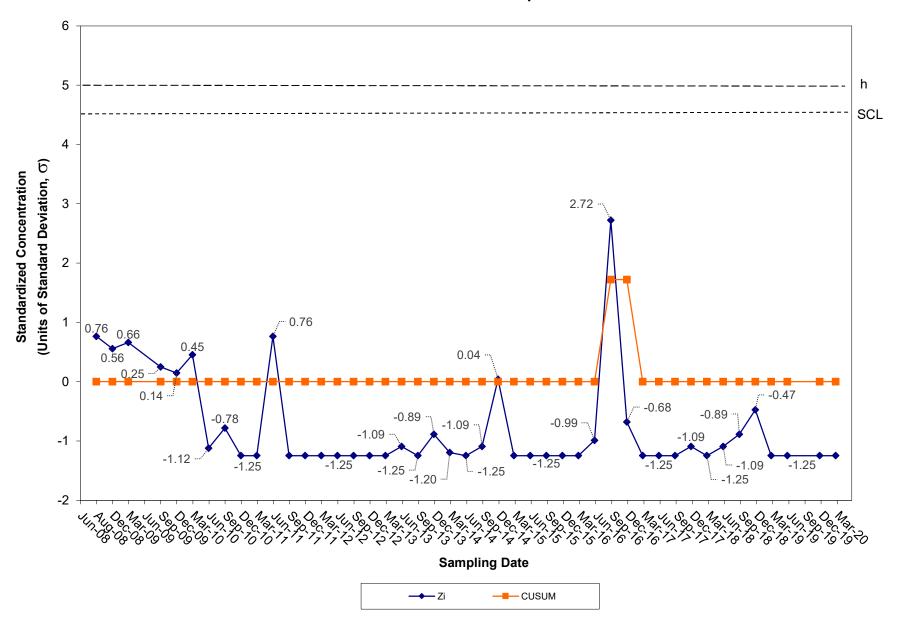

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-13

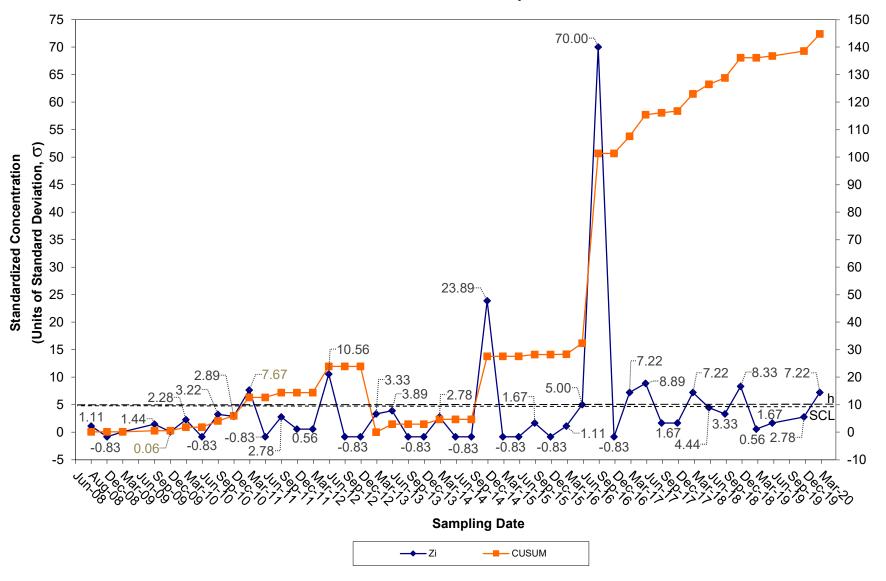

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-13

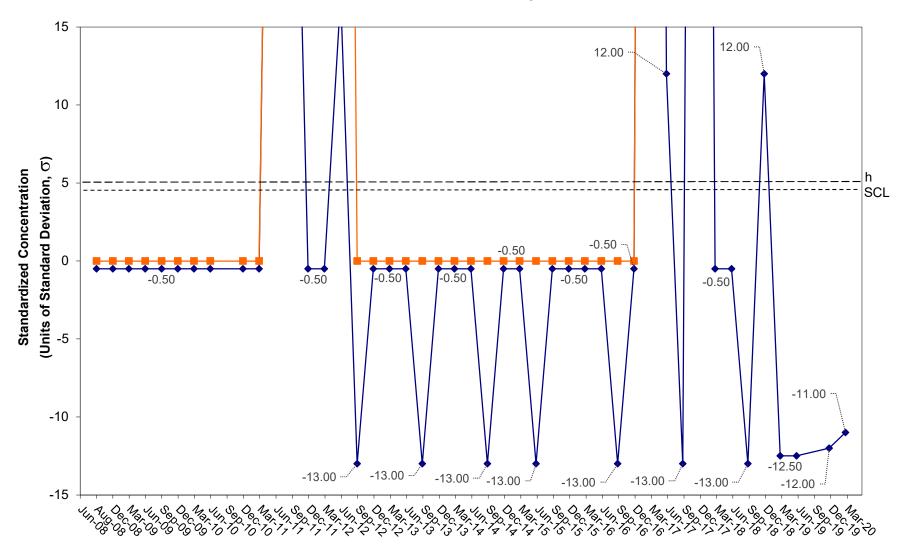

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-13

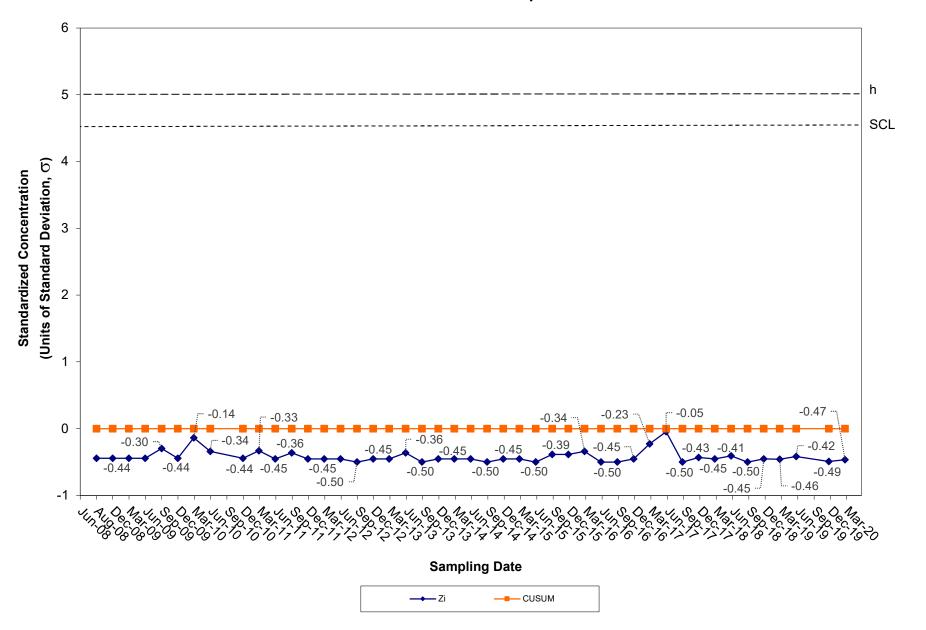

CUSUM Control Chart for Selenium Tiverton Landfill Groundwater Compliance Well OW-13

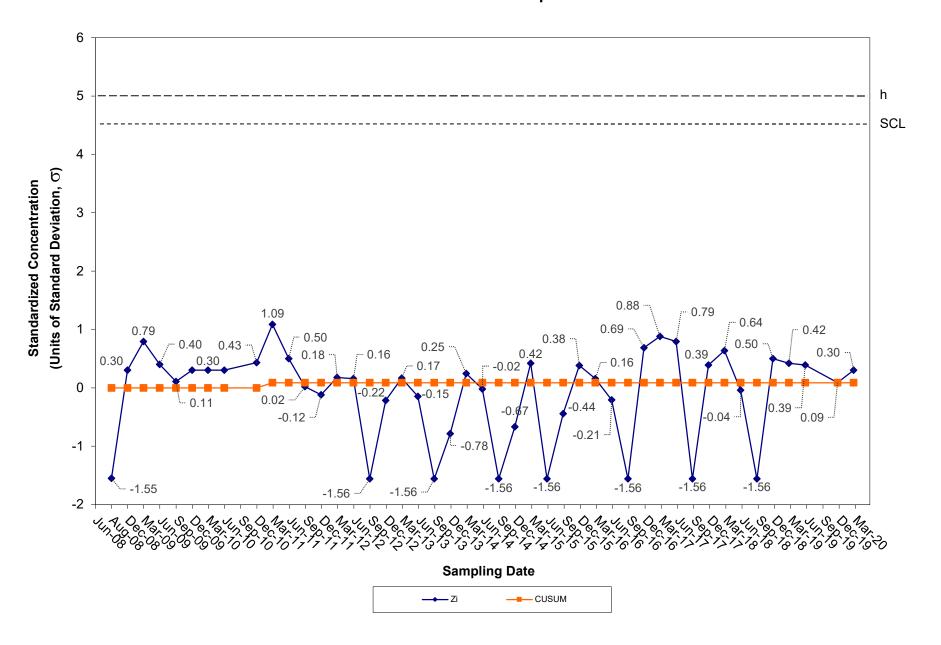

CUSUM Control Chart for Silver Tiverton Landfill Groundwater Compliance Well OW-13

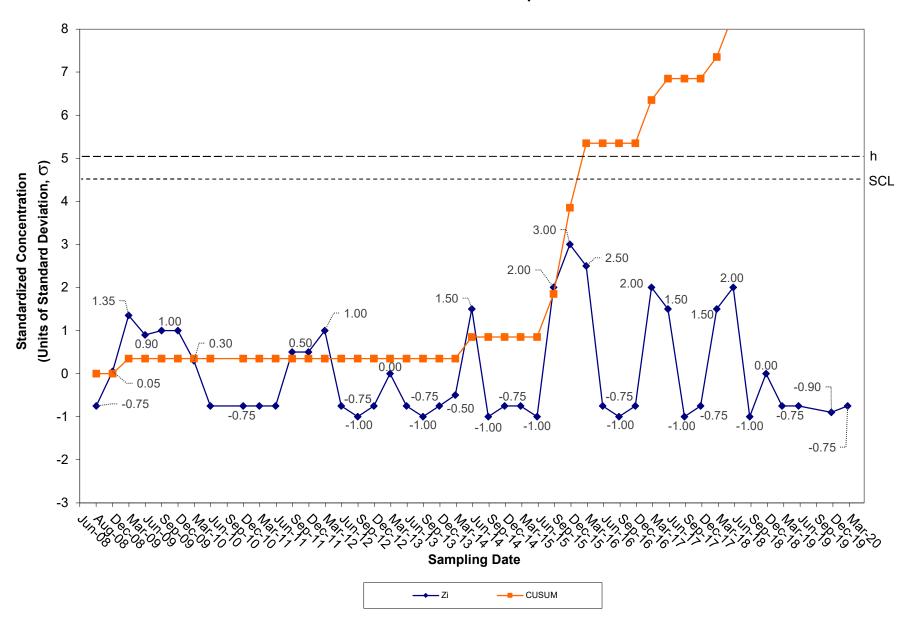

CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Compliance Well OW-13

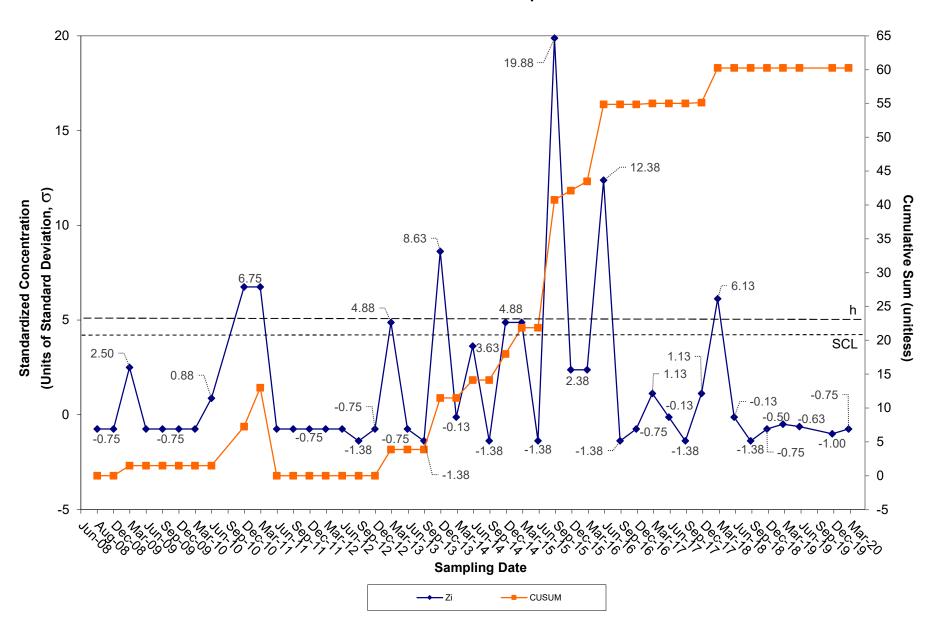

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-13

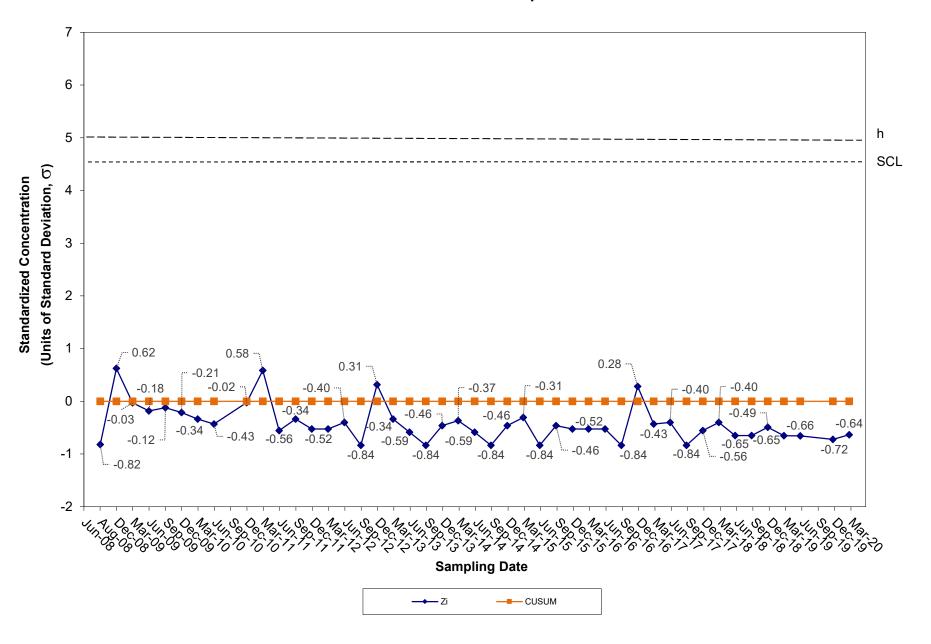
CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-13

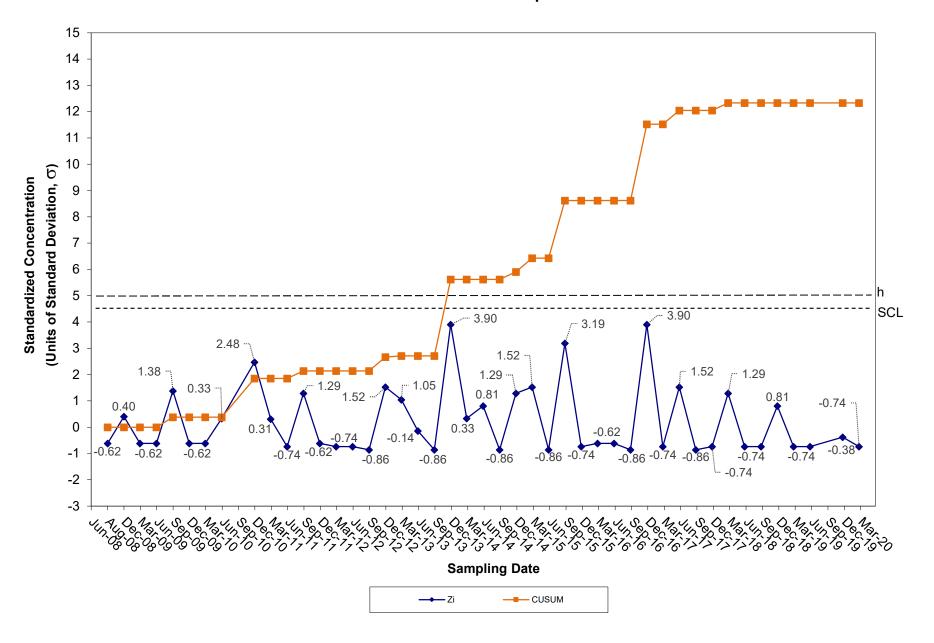

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-14

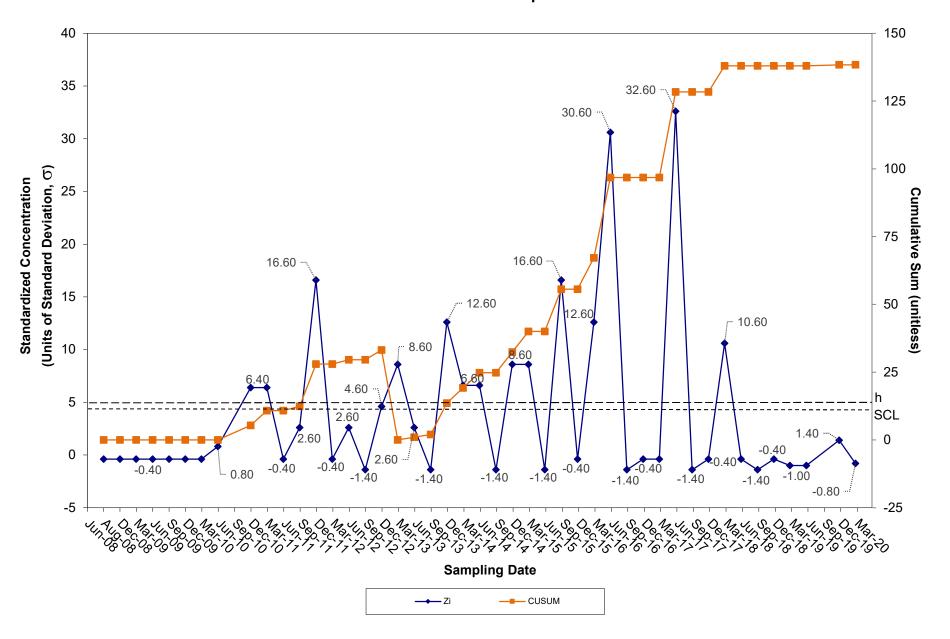

Sampling Date

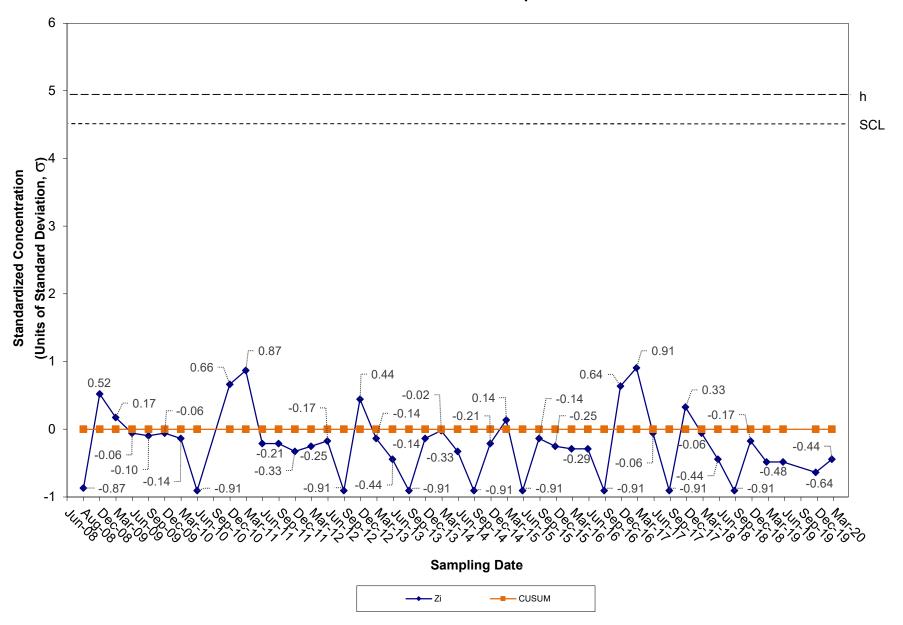

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-14

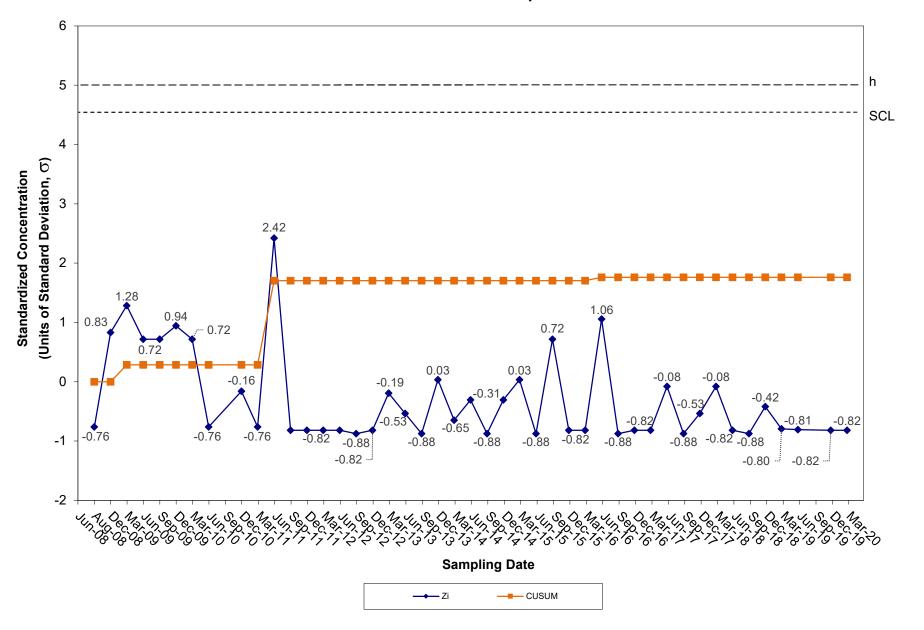

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-14

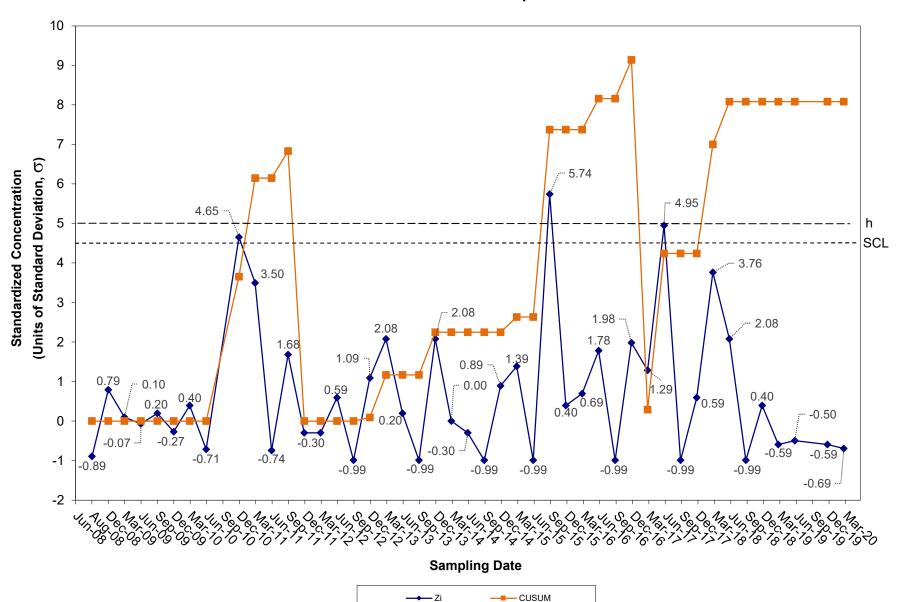

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-14

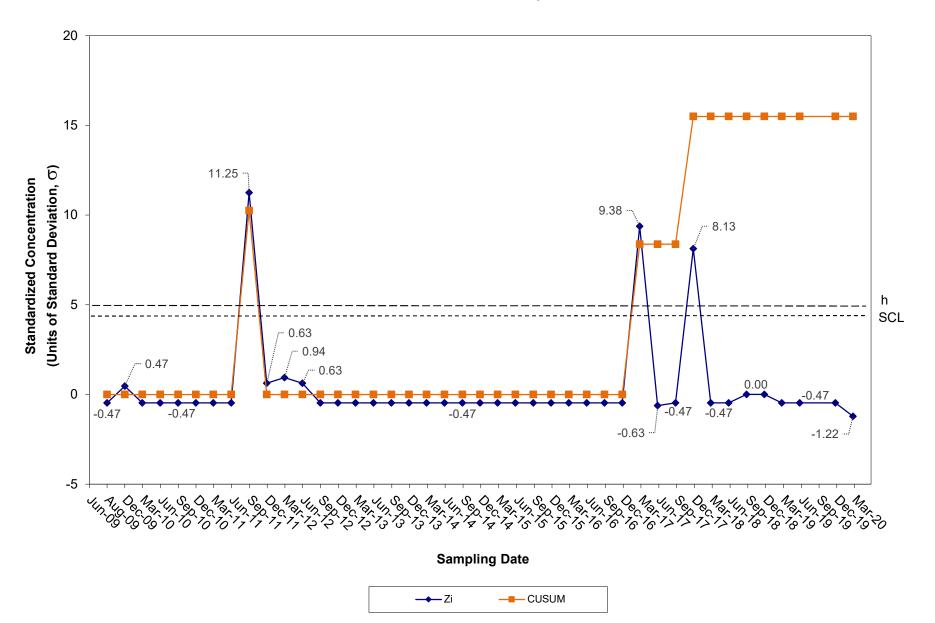

CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-14

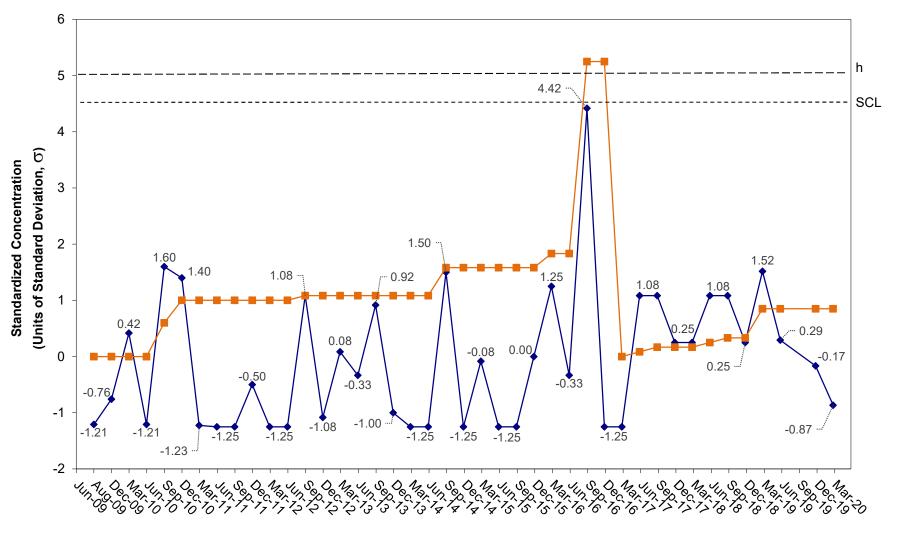

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-14

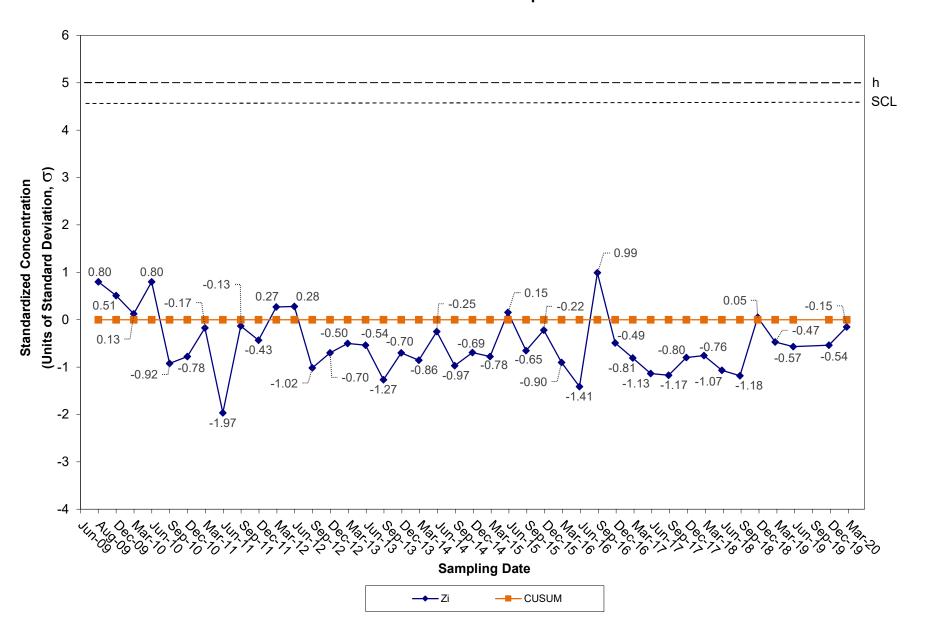

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-14

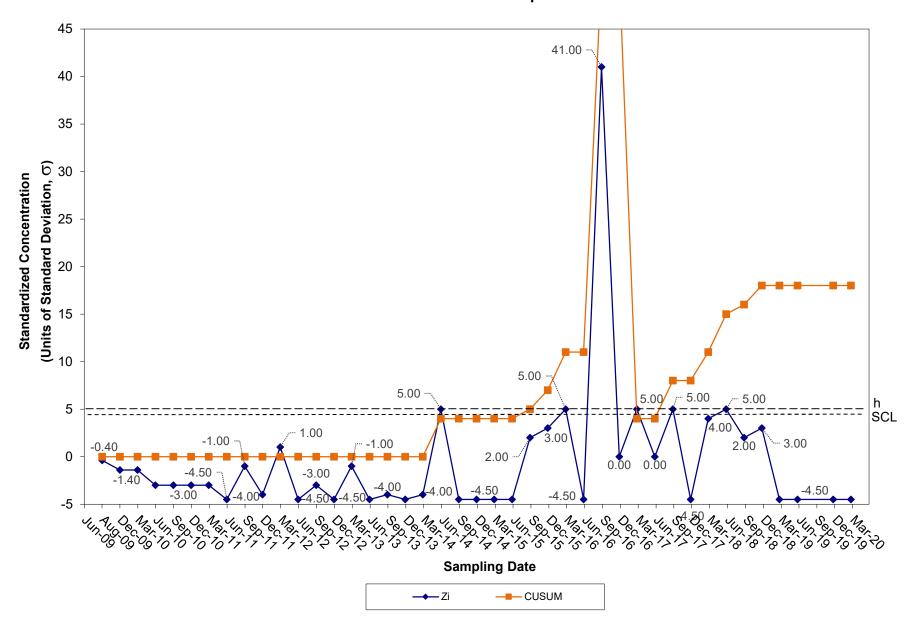

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-14

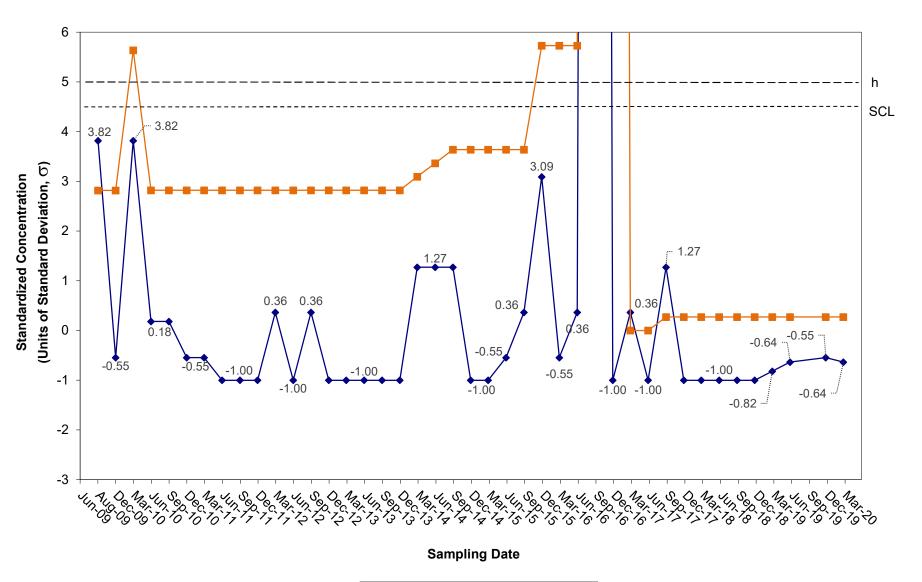

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-14

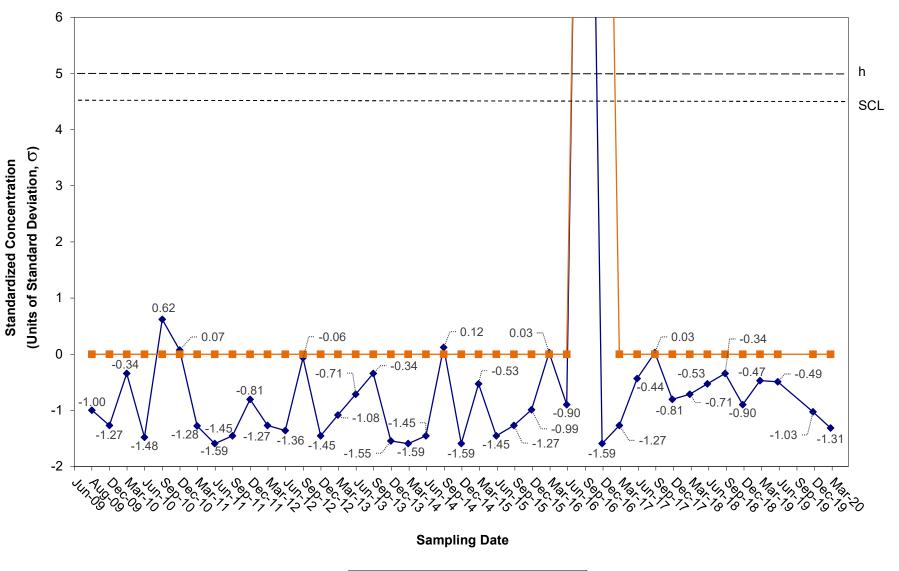
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-15

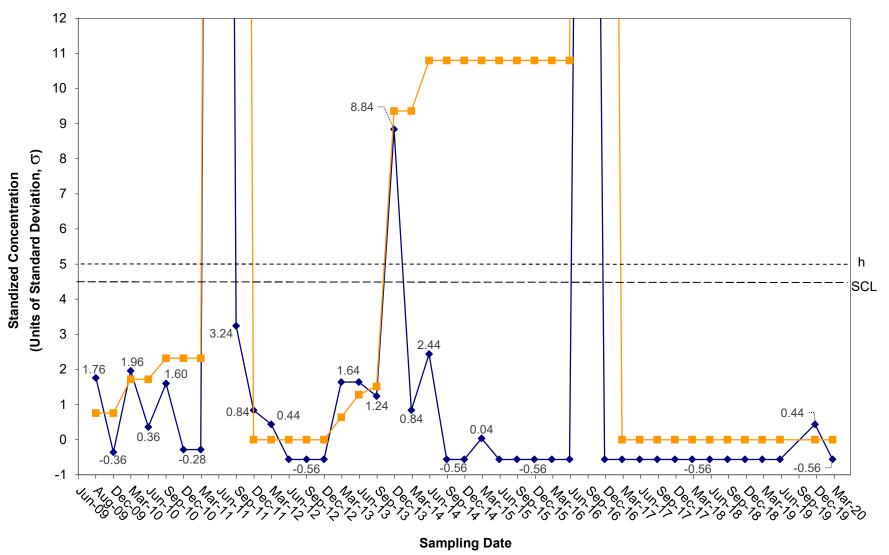

Sampling Date


CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-15

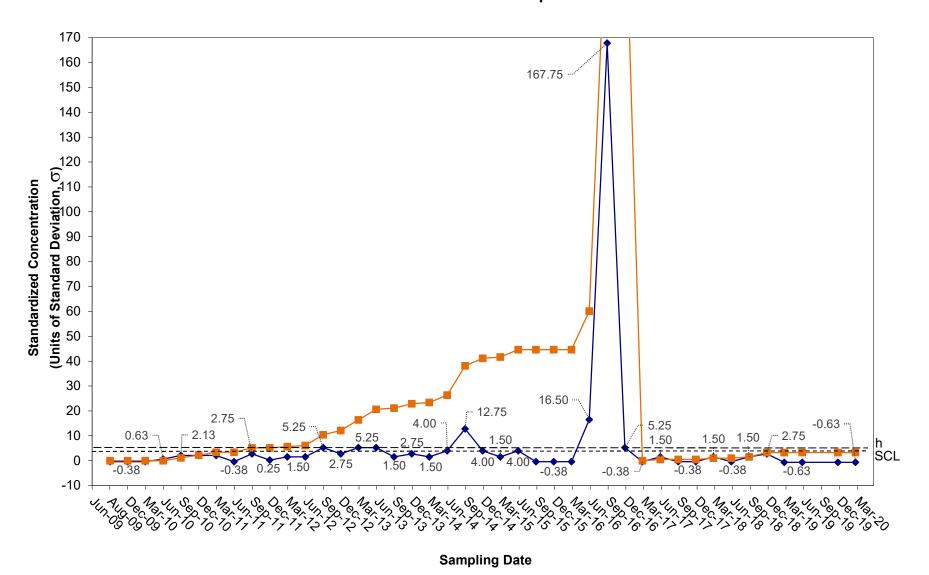
CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-15



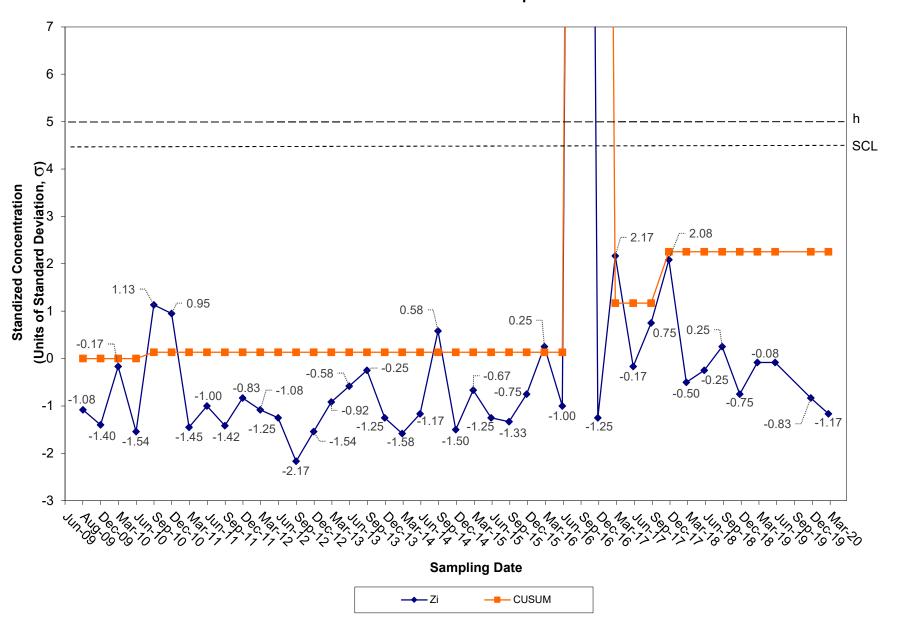
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-15

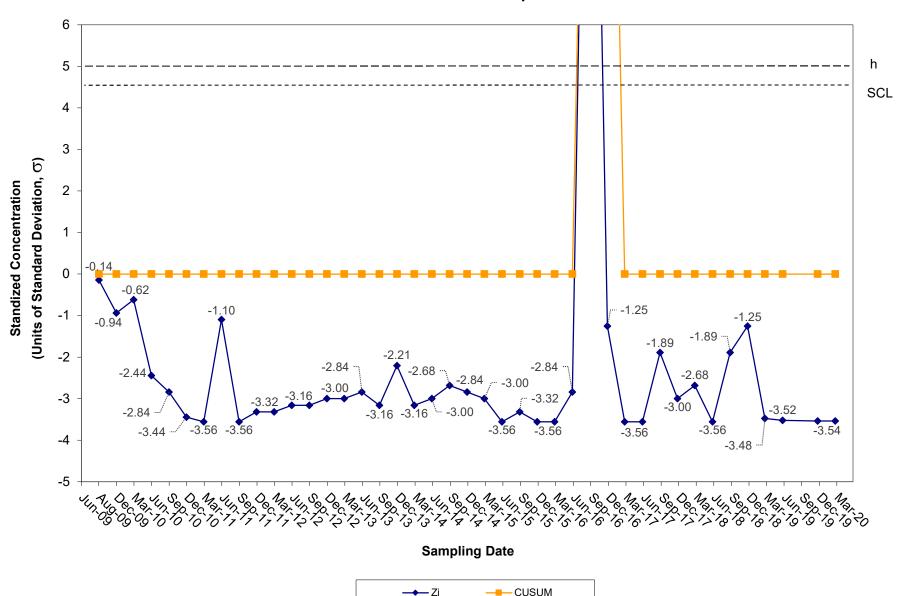


CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-15

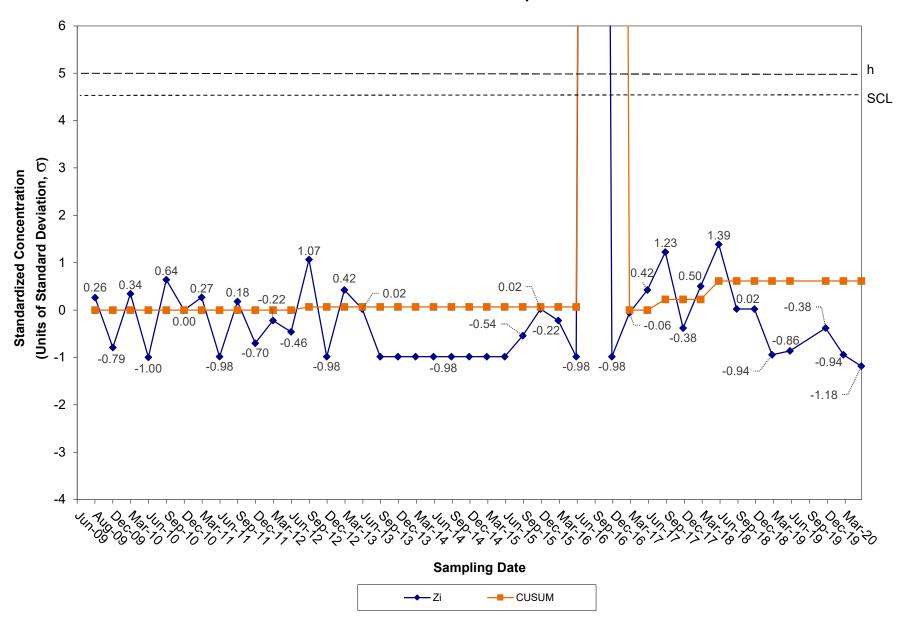

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-15

-Zi


CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-15


→ Zi

—— CUSUM


CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Complaince Well OW-15

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Complaince Well OW-15

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-15

ATTACHMENT 5

Laboratory Analytical Report, Surface Water Sampling

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 0C27016 Client Project: 94139 - Tiverton Landfill

Report Date: 02-April-2020

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com NETLAB Case Number: 0C27016

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 03/27/20. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 0C27016. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
0C27016-01	SW-1	Water	03/26/2020	03/27/2020
0C27016-02	SW-2	Water	03/26/2020	03/27/2020
0C27016-03	SW-3	Water	03/26/2020	03/27/2020

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SW-1 (Lab Number: 0C27016-01)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B (11)
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B (11)
Mercury	EPA 7470A
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Nitrate as N	4500-N03-E
Nitrite as N	SM4500-N02-B (11)
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500-N-C (11)
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E (11)
Vanadium	EPA 200.8
Zinc	EPA 200.8

SW-2 (Lab Number: 0C27016-02)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B (11)
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B (11)
Mercury	EPA 7470A
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Nitrate as N	4500-N03-E
Nitrite as N	SM4500-N02-B (11)
Selenium	EPA 200.8

Request for Analysis (continued)

SW-2 (Lab Number: 0C27016-02) (continued)

<u>Analysis</u>	<u>Method</u>
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500-N-C (11)
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E (11)
Vanadium	EPA 200.8
Zinc	EPA 200.8

SW-3 (Lab Number: 0C27016-03)

<u>Analysis</u>	<u>Method</u>
Ammonia	SM4500-NH3-D (11)
Antimony	EPA 200.8
Arsenic	EPA 200.8
Barium	EPA 200.8
Beryllium	EPA 200.8
Cadmium	EPA 200.8
Calcium	SM3120-B (11)
Chromium	EPA 200.8
Cobalt	EPA 200.8
Copper	EPA 200.8
Iron	EPA 200.8
Lead	EPA 200.8
Magnesium	SM3120-B (11)
Mercury	EPA 7470A
Nickel	EPA 200.8
Nitrate and Nitrite as N	4500-N03-E
Nitrate as N	4500-N03-E
Nitrite as N	SM4500-N02-B (11)
Selenium	EPA 200.8
Silver	EPA 200.8
Thallium	EPA 200.8
Tin	EPA 200.8
Total Kjeldahl Nitrogen	SM4500-N-C (11)
Total Nitrogen	Calculation
Total Phosphorous	SM4500-P-E (11)
Vanadium	EPA 200.8
Zinc	EPA 200.8

Method References

Methods for the Determination of Metals in Environmental Samples EPA-600/R-94/111, USEPA, 1994

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Soil Survey Laboratory Methods Manual, USDA/NCRS, 2014

NETLAB Case Number: 0C27016

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions:

Nitrite: The Matrix Spike for the 'SW-1' sample fell outside of the recommended QC parameters.

NETLAB Case Number: 0C27016

Results: General Chemistry

Sample: SW-1

Lab Number: 0C27016-01 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	ND		0.1	mg/L	04/01/20	04/01/20
Kjeldahl Nitrogen	0.4		0.1	mg/L	03/30/20	03/30/20
Nitrate as N	0.463		0.0370	mg/L	03/27/20 14:05	03/27/20 14:05
Nitrate and Nitrite as N	0.46		0.03	mg/L	03/27/20	03/27/20
Nitrite as N	ND		0.007	mg/L	03/27/20 14:05	03/27/20 14:05
Total Phosphorous	ND		0.10	mg/L	04/01/20	04/01/20
Total Nitrogen	0.860		0.100	mg/L	04/01/20	04/01/20

NETLAB Case Number: 0C27016

Results: General Chemistry

Sample: SW-2

Lab Number: 0C27016-02 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	0.1		0.1	mg/L	04/01/20	04/01/20
Kjeldahl Nitrogen	0.4		0.1	mg/L	03/30/20	03/30/20
Nitrate as N	ND		0.0370	mg/L	03/27/20 14:30	03/27/20 14:30
Nitrate and Nitrite as N	ND		0.03	mg/L	03/27/20	03/27/20
Nitrite as N	ND		0.007	mg/L	03/27/20 14:30	03/27/20 14:30
Total Phosphorous	ND		0.10	mg/L	04/01/20	04/01/20
Total Nitrogen	0.400		0.100	mg/L	04/01/20	04/01/20

NETLAB Case Number: 0C27016

Results: General Chemistry

Sample: SW-3

Lab Number: 0C27016-03 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Ammonia	ND		0.1	mg/L	04/01/20	04/01/20
Kjeldahl Nitrogen	0.8		0.2	mg/L	03/30/20	03/30/20
Nitrate as N	0.465		0.0370	mg/L	03/27/20 14:30	03/27/20 14:30
Nitrate and Nitrite as N	0.47		0.03	mg/L	03/27/20	03/27/20
Nitrite as N	0.007		0.007	mg/L	03/27/20 14:30	03/27/20 14:30
Total Phosphorous	ND		0.10	mg/L	04/01/20	04/01/20
Total Nitrogen	1.27		0.200	mg/L	04/01/20	04/01/20

Results: Total Metals

Sample: SW-1

Lab Number: 0C27016-01 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Total Hardness	79.3	0.125	mg/L	03/30/20	03/31/20
Antimony	0.0001	0.0001	mg/L	03/30/20	03/30/20
Arsenic	0.0002	0.0001	mg/L	03/30/20	03/30/20
Barium	0.017	0.001	mg/l	03/30/20	03/30/20
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20
Cadmium	ND	0.0001	mg/L	03/30/20	03/30/20
Calcium	23.5	0.05	mg/L	03/30/20	03/31/20
Chromium	0.0004	0.0001	mg/L	03/30/20	03/30/20
Cobalt	0.0002	0.0001	mg/L	03/30/20	03/30/20
Copper	0.001	0.001	mg/l	03/30/20	03/30/20
Iron	0.304	0.001	mg/l	03/30/20	03/30/20
Magnesium	4.98	0.05	mg/L	03/30/20	03/31/20
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20
Nickel	0.001	0.001	mg/l	03/30/20	03/30/20
Selenium	ND	0.005	mg/L	03/30/20	03/30/20
Silver	ND	0.0001	mg/L	03/30/20	03/30/20
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20
Tin	ND	0.005	mg/l	03/30/20	03/30/20
Vanadium	ND	0.0005	mg/L	03/30/20	03/30/20
Zinc	0.003	0.001	mg/l	03/30/20	03/30/20
Lead	0.0005	0.0001	mg/L	03/30/20	03/30/20

Results: Total Metals

Sample: SW-2

Lab Number: 0C27016-02 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Total Hardness	17.8	0.125	mg/L	03/30/20	03/31/20
Antimony	ND	0.0001	mg/L	03/30/20	03/30/20
Arsenic	0.0002	0.0001	mg/L	03/30/20	03/30/20
Barium	0.007	0.001	mg/l	03/30/20	03/30/20
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20
Cadmium	ND	0.0001	mg/L	03/30/20	03/30/20
Calcium	3.98	0.05	mg/L	03/30/20	03/31/20
Chromium	0.0006	0.0001	mg/L	03/30/20	03/30/20
Cobalt	0.0012	0.0001	mg/L	03/30/20	03/30/20
Copper	0.001	0.001	mg/l	03/30/20	03/30/20
Iron	0.911	0.001	mg/l	03/30/20	03/30/20
Magnesium	1.90	0.05	mg/L	03/30/20	03/31/20
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20
Nickel	0.002	0.001	mg/l	03/30/20	03/30/20
Selenium	ND	0.005	mg/L	03/30/20	03/30/20
Silver	ND	0.0001	mg/L	03/30/20	03/30/20
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20
Tin	ND	0.005	mg/l	03/30/20	03/30/20
Vanadium	0.0007	0.0005	mg/L	03/30/20	03/30/20
Zinc	0.003	0.001	mg/l	03/30/20	03/30/20
Lead	0.0007	0.0001	mg/L	03/30/20	03/30/20

Results: Total Metals

Sample: SW-3

Lab Number: 0C27016-03 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Total Hardness	79.0	0.125	mg/L	03/30/20	03/31/20
Antimony	0.0001	0.0001	mg/L	03/30/20	03/30/20
Arsenic	0.0002	0.0001	mg/L	03/30/20	03/30/20
Barium	0.019	0.001	mg/l	03/30/20	03/30/20
Beryllium	ND	0.0001	mg/L	03/30/20	03/30/20
Cadmium	ND	0.0001	mg/L	03/30/20	03/30/20
Calcium	23.3	0.05	mg/L	03/30/20	03/31/20
Chromium	0.0007	0.0001	mg/L	03/30/20	03/30/20
Cobalt	0.0002	0.0001	mg/L	03/30/20	03/30/20
Copper	0.001	0.001	mg/l	03/30/20	03/30/20
Iron	1.18	0.001	mg/l	03/30/20	03/30/20
Magnesium	5.06	0.05	mg/L	03/30/20	03/31/20
Mercury	ND	0.0002	mg/L	03/30/20	03/30/20
Nickel	0.001	0.001	mg/l	03/30/20	03/30/20
Selenium	ND	0.005	mg/L	03/30/20	03/30/20
Silver	ND	0.0001	mg/L	03/30/20	03/30/20
Thallium	ND	0.0001	mg/L	03/30/20	03/30/20
Tin	0.025	0.005	mg/l	03/30/20	03/30/20
Vanadium	0.0006	0.0005	mg/L	03/30/20	03/30/20
Zinc	0.004	0.001	mg/l	03/30/20	03/30/20
Lead	0.0018	0.0001	mg/L	03/30/20	03/30/20

Quality Control

General Chemistry

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ruidiyee	Result	- Quui	Lilling	Onico	LCVCI	Nesuit	/UINEC	LIIIIG	NID	Limit
Batch: B0C1185 - General Chem	nistry									
Blank (B0C1185-BLK1)					Prepared 8	& Analyzed: 0	3/27/20			
Nitrate and Nitrite as N	ND		0.03	mg/L						
Blank (B0C1185-BLK2)					Prepared 8	& Analyzed: 0	3/27/20			
Nitrate and Nitrite as N	ND		0.03	mg/L						
LCS (B0C1185-BS1)					Prepared 8	& Analyzed: 0	3/27/20			
Nitrate and Nitrite as N	0.74		0.03	mg/L	0.800		92.6	90-110		
LCS (B0C1185-BS2)					Prepared 8	& Analyzed: 0	3/27/20			
Nitrate and Nitrite as N	0.82		0.03	mg/L	0.800		103	90-110		
Duplicate (B0C1185-DUP1)	S	ource: 0	C27016-01		Prepared 8	& Analyzed: 0	3/27/20			
Nitrate and Nitrite as N	0.41		0.03	mg/L		0.46			12.6	200
Matrix Spike (B0C1185-MS1)	S	ource: 0	C27016-01		Prepared 8	& Analyzed: 0	3/27/20			
Nitrate and Nitrite as N	1.24		0.03	mg/L	0.800	0.46	96.5	80-120		
Batch: BOC1186 - Nitrite										
Blank (B0C1186-BLK1)					Prepared 8	& Analyzed: 0	3/27/20			
Nitrite as N	ND		0.007	mg/L						
Blank (B0C1186-BLK2)					Prepared 8	& Analyzed: 0	3/27/20			
Nitrite as N	ND		0.007	mg/L						
LCS (B0C1186-BS1)					Prepared 8	& Analyzed: 0	3/27/20			
Nitrite as N	0.094		0.007	mg/L	0.100		94.0	90-110		

		_	y Control ntinued)						
General Chemistry (Continued)									
Analyte	Result Ç	Reporting Jual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B0C1186 - Nitrite (Cont	tinued)								
LCS (B0C1186-BS2)				Prepared 8	& Analyzed: 0	3/27/20			
Nitrite as N	0.096	0.007	mg/L	0.100		96.0	90-110		
Duplicate (B0C1186-DUP1)	Sour	ce: 0C27016-01		Prepared 8	& Analyzed: 0	3/27/20			
Nitrite as N	ND	0.007	mg/L		ND				20
Matrix Spike (B0C1186-MS1)	Sour	ce: 0C27016-01		Prepared 8	& Analyzed: 0	3/27/20			
Nitrite as N	0.067	0.007	mg/L	0.100	ND	67.0	80-120		
Batch: B0C1229 - TKN									
Blank (B0C1229-BLK1)				Prepared 8	& Analyzed: 0	3/30/20			
Kjeldahl Nitrogen	ND	0.1	mg/L						
Blank (B0C1229-BLK2)				Prepared 8	& Analyzed: 0	3/30/20			
Kjeldahl Nitrogen	ND	0.1	mg/L						
Batch: B0C1310 - Total phosph	hate								
Blank (B0C1310-BLK1)				Prepared 8	& Analyzed: 0	4/01/20			
Total Phosphorous	ND	0.02	mg/L	·	-				
Blank (B0C1310-BLK2)				Prepared 8	& Analyzed: 0	4/01/20			
Total Phosphorous	ND	0.02	mg/L						
LCS (B0C1310-BS1)				Prepared 8	& Analyzed: 0	4/01/20			
Total Phosphorous	1.02	0.02	mg/L	1.00		102	90-110		

				Control						
General Chemistry (Continued)										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B0C1310 - Total phosphat	e (Continu	ıed)								
LCS (B0C1310-BS2)					Prepared 8	& Analyzed: 0	4/01/20			
Total Phosphorous	1.02		0.02	mg/L	1.00		102	90-110		
Duplicate (B0C1310-DUP1)	9	Source: 0	C26002-01		Prepared 8					
Total Phosphorous	ND		0.02	mg/L		ND				20
Matrix Spike (B0C1310-MS1)	9	Source: 0	C26002-01		Prepared 8	& Analyzed: 0	4/01/20			
Total Phosphorous	0.58		0.02	mg/L	1.00	ND	58.1	80-120		
Batch: B0D0018 - Ammonia										
Blank (B0D0018-BLK1)					Prepared 8	& Analyzed: 0	4/01/20			
Ammonia	ND		0.1	mg/L			,, -, - :			
Blank (B0D0018-BLK2)					Prepared 8	& Analyzed: 0	4/01/20			
Ammonia	ND		0.1	mg/L		,	, ,			
LCS (B0D0018-BS1)				-	Prepared 8	& Analyzed: 0	4/01/20			
Ammonia	1.0		0.1	mg/L	1.00	,	102	90-110		
LCS (B0D0018-BS2)					Prepared 8	& Analyzed: 0	4/01/20			
Ammonia	1.0		0.1	mg/L	1.00	•	96.2	90-110		
Duplicate (B0D0018-DUP1)	9	Source: 0	C31008-02		Prepared 8	& Analyzed: 0	4/01/20			
Ammonia	ND		0.1	mg/L		ND				20
Matrix Spike (B0D0018-MS1)	9	Source: 0	C31008-02		Prepared 8	& Analyzed: 0	4/01/20			
Ammonia	1.1		0.1	mg/L	1.00	ND	111	80-120		

				Control						
Total Metals										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B0C1210 - Metals D	Digestion Waters									
Blank (B0C1210-BLK1)	.,				Prepared 8	& Analyzed: 03	3/30/20			
Chromium	ND		0.0001	mg/L		,	, ,			
Barium	ND		0.001	mg/l						
Arsenic	ND		0.0001	mg/L						
Magnesium	ND		0.05	mg/L						
Calcium	ND		0.05	mg/L						
Silver	ND		0.0001	mg/L						
Cobalt	ND		0.0001	mg/L						
Copper	ND		0.001	mg/l						
Iron	ND		0.001	mg/l						
Vanadium	ND		0.0005	mg/L						
Thallium	ND		0.0001	mg/L						
Nickel	ND		0.001	mg/l						
Cadmium	ND		0.0001	mg/L						
Zinc	ND		0.001	mg/l						
Beryllium	ND		0.0001	mg/L						
Tin	ND		0.005	mg/l						
Selenium	ND		0.005	mg/L						
Antimony	ND		0.0001	mg/L						
Lead	ND		0.0001	mg/L						
LCS (B0C1210-BS1)					renared: 03/3	0/20 Analyze	d· 03/31/20			
Magnesium	9.00		0.05	mg/L	10.0	0/20 Analyze	90.0	85-115		
Calcium	9.41		0.05	mg/L	10.0		94.1	85-115		
	7.11		0.03	IIIg/L) Ald- 01				
LCS (B0C1210-BS2)	0.100		0.001	/1	=	& Analyzed: 03		05 115		
Nickel	0.190		0.001	mg/l	0.200		95.1	85-115		
Iron	0.200		0.001	mg/l	0.200		100	85-115		
Copper	0.173		0.001	mg/l	0.200		86.6	85-115		
Chromium	0.0202		0.0001	mg/L	0.0200		101	85-115		
Silver	0.0189		0.0001	mg/L	0.0200		94.5	85-115		
Arsenic	0.0178		0.0001	mg/L	0.0200		88.9	85-115		
Beryllium	0.0200		0.0001	mg/L	0.0200		99.9	85-115		
Antimony	0.0201		0.0001	mg/L	0.0200		100	85-115		
Selenium	0.017		0.005	mg/L	0.0200		85.9	85-115		
Tin	0.019		0.005	mg/l	0.0200		95.6	85-115		
Cadmium	0.0198		0.0001	mg/L	0.0200		98.8	85-115		
Cobalt	0.0197		0.0001	mg/L	0.0200		98.4	85-115		
Thallium	0.0201		0.0001	mg/L	0.0200		100	85-115		
Vanadium	0.0197		0.0005	mg/L	0.0200		98.6	85-115		
Zinc	0.173		0.001	mg/l	0.200		86.3	85-115		
Barium	0.220		0.001	mg/l	0.200		110	85-115		
Lead	0.0205		0.0001	mg/L	0.0200		103	85-115		

				Control						
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B0C1244 - Metals Co	old-Vapor Mercu	ry								
Blank (B0C1244-BLK1)	-	-			Prepared 8	& Analyzed: 0	3/30/20			
Mercury	ND		0.0002	mg/L						
LCS (B0C1244-BS1)					Prepared 8	& Analyzed: 0	3/30/20			
Mercury	0.0010		0.0002	ma/l	0.00100		105	85-115		

Notes and Definitions

<u>Item</u>	<u>Definition</u>
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

REMARKS

NEW ENGLAND TESTING LABORATORY, IN 59 Greenhill Street

West Warwick, RI 02893 1-888-863-8522

→ Laboratory Remarks,
Temp received $\sigma \alpha m \alpha m \alpha >$ CONTAINERS Date/Time 일 **&** S О⊢тшш SO-1 <α⊃mo⊃α 94139.01 Tiverby Landfill Querterly Manitoring Received by (Signature) REPORTION A Plynning per a corp. com, about the of perceptum SAMPLE I D. 7/26/10 1635 Date/Time Date/Time SW-2 50-7 PROJECT NAME/LOCATION Pare Corporation REPORT TO THE LYNN.
INVOICE TO ACCOUNTING.

C C G R

C C G R

M A A B Sampled by (Signature) 0845 835 3/26/2 10915 PROJ NO Į

Special Instructions: List Specific Detection Limit Requirements

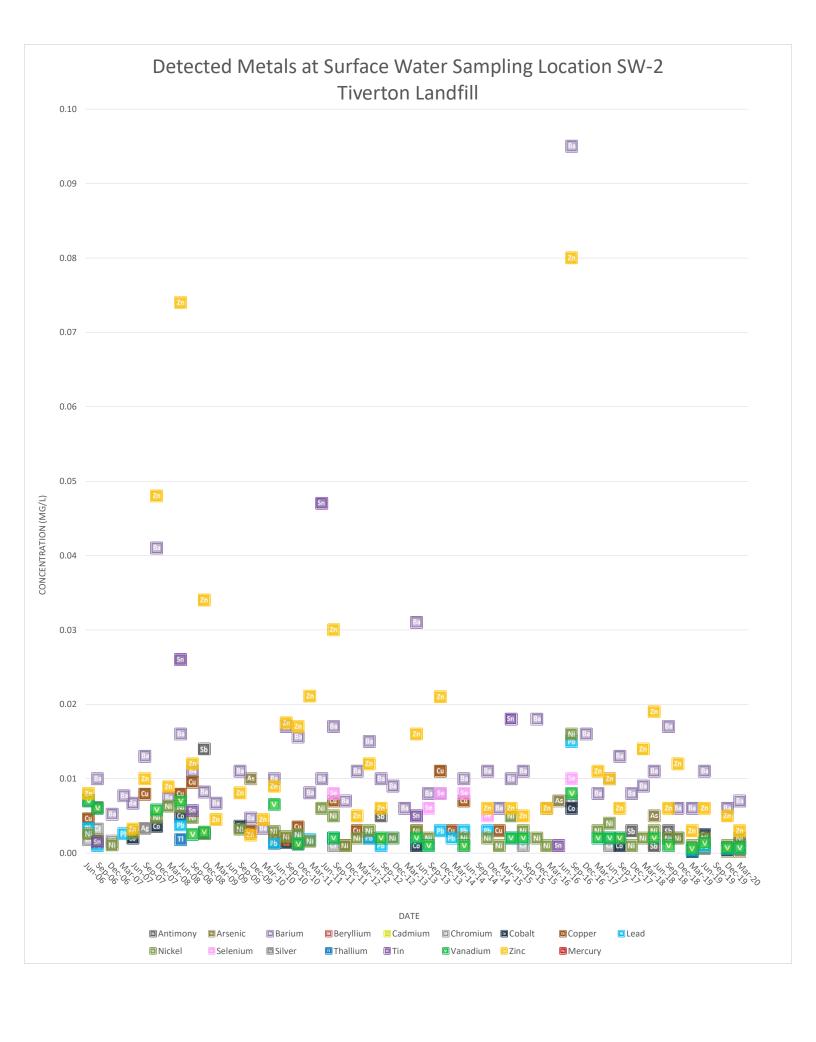
Turnaround (Busin ss Days)

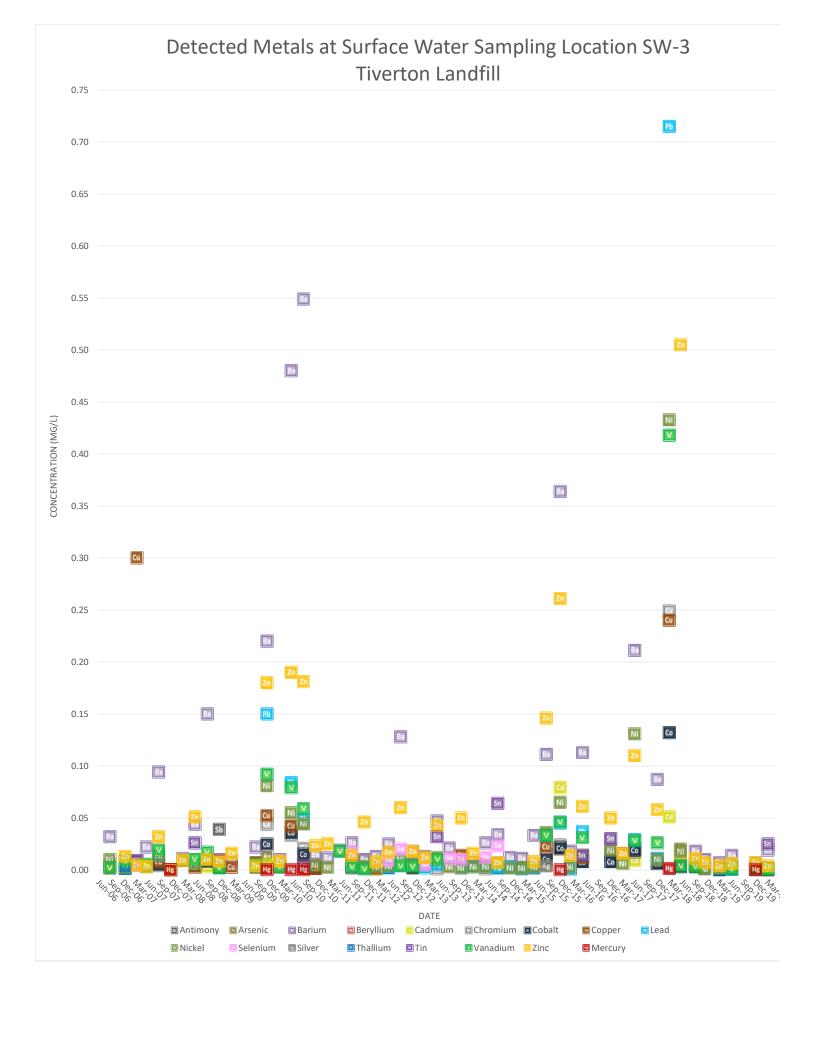
**Netlab subcontracts the following tests: Radiologicals, Radon, Aspestos, UCMRs, Pelchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

31472

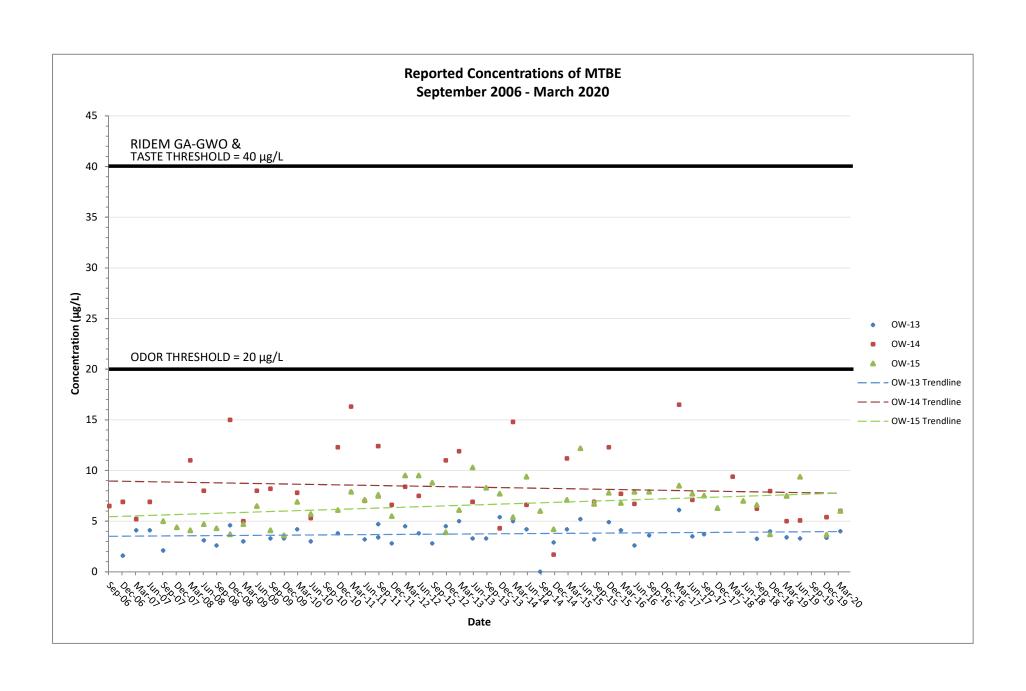
3/27/20 1236

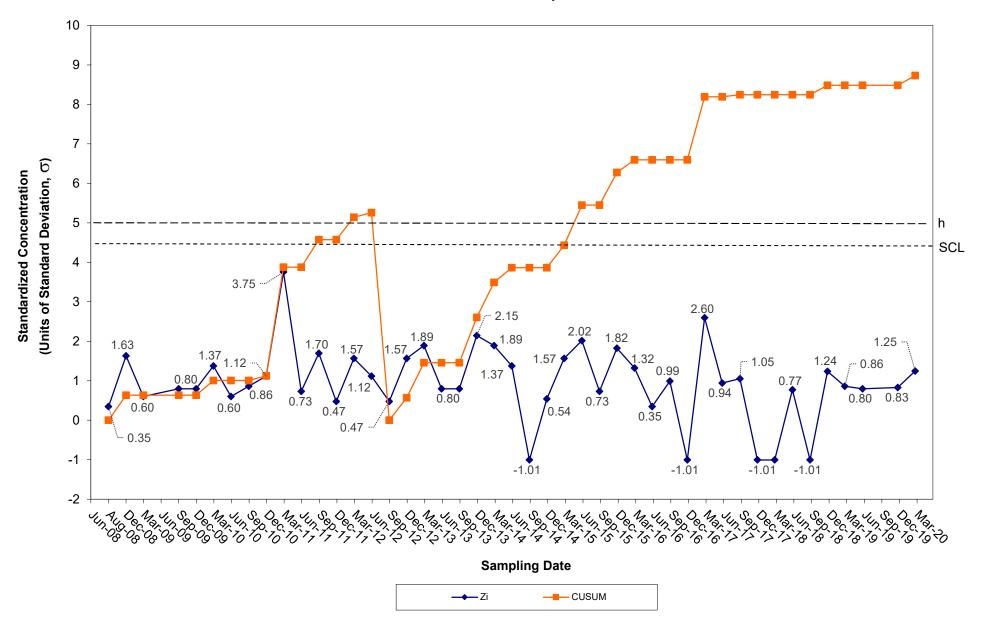

2/20/00 /10/B


Page 18 of 18

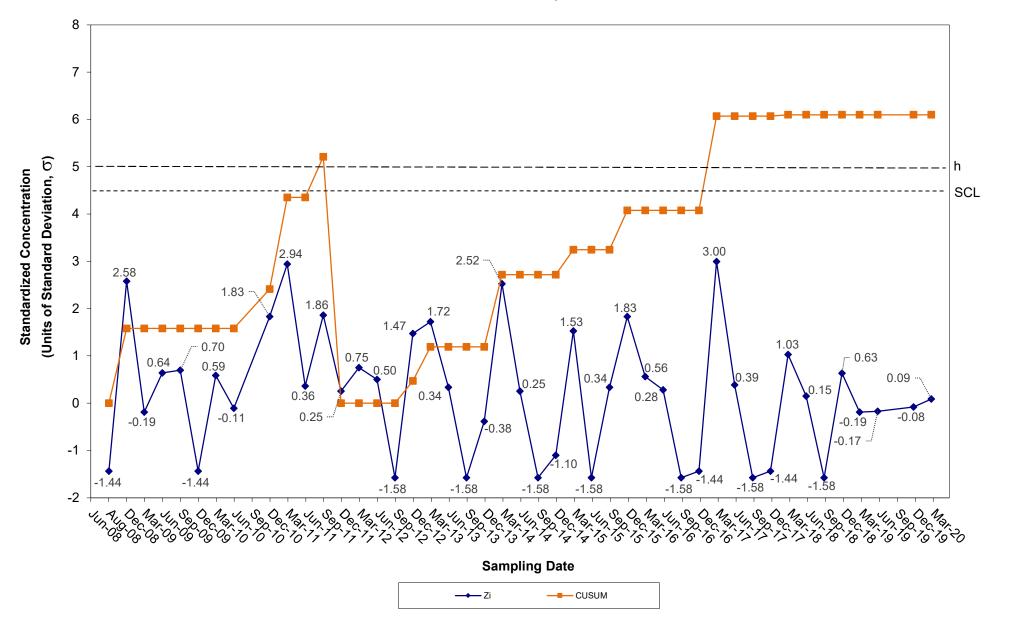

ATTACHMENT 6

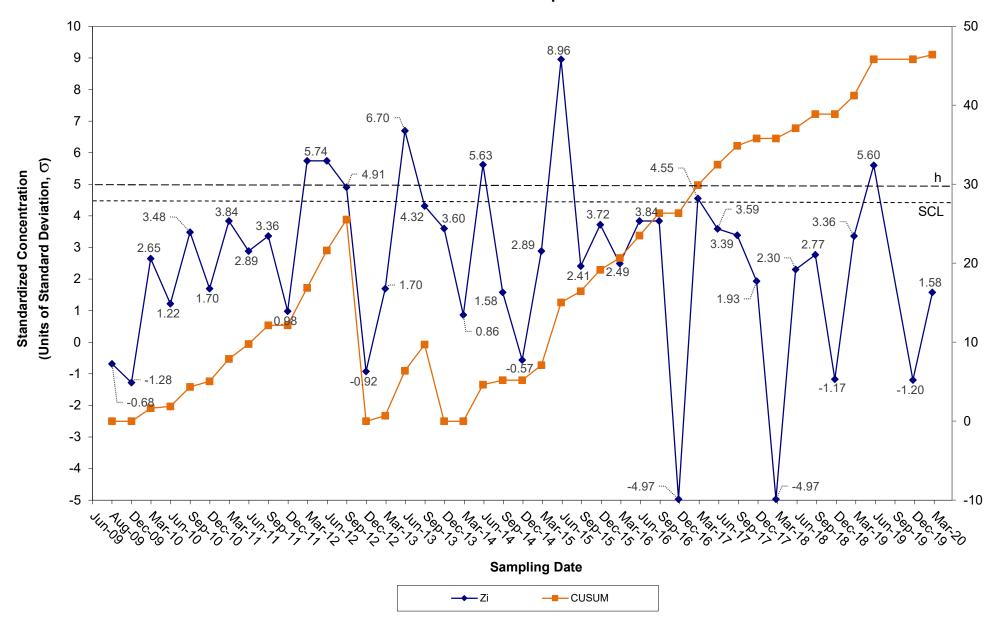
Charts of Historical Inorganic Compound Detections, Surface Water Sampling




ATTACHMENT 7

MTBE Historical Concentrations at OW-13, OW-14, and OW-15 and CUSUM charts




CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-13

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-14

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-15

